Multimodal Human Pose Feature Fusion for Gait Recognition.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorCubero, Nicolás
dc.contributor.authorCastro Payán, Francisco Manuel
dc.contributor.authorRamos-Cózar, Julián
dc.contributor.authorGuil-Mata, Nicolás
dc.contributor.authorMarín Jiménez, Manuel Jesús
dc.date.accessioned2023-07-17T12:20:56Z
dc.date.available2023-07-17T12:20:56Z
dc.date.created2023
dc.date.issued2023
dc.departamentoArquitectura de Computadores
dc.description.abstractGait recognition allows identifying people at a distance based on the way they walk (i.e. gait) in a non-invasive approach. Most of the approaches published in the last decades are dominated by the use of silhouettes or other appearance-based modalities to describe the Gait cycle. In an attempt to exclude the appearance data, many works have been published that address the use of the human pose as a modality to describe the walking movement. However, as the pose contains less information when used as a single modality, the performance achieved by the models is generally poorer. To overcome such limitations, we propose a multimodal setup that combines multiple pose representation models. To this end, we evaluate multiple fusion strategies to aggregate the features derived from each pose modality at every model stage. Moreover, we introduce a weighted sum with trainable weights that can adaptively learn the optimal balance among pose modalities. Our experimental results show that (a) our fusion strategies can effectively combine different pose modalities by improving their baseline performance; and, (b) by using only human pose, our approach outperforms most of the silhouette-based state-of-the-art approaches. Concretely, we obtain 92.8% mean Top-1 accuracy in CASIA-B.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/27271
dc.language.isoenges_ES
dc.relation.eventdate25/06/2023es_ES
dc.relation.eventplaceAlicante, Españaes_ES
dc.relation.eventtitleIberian Conference on Pattern Recognition and Image Analysis 2023es_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectBiometríaes_ES
dc.subjectReconocimiento óptico de formas (Informática)es_ES
dc.subject.otherGait recognitiones_ES
dc.subject.otherSurveillancees_ES
dc.subject.otherBiometricses_ES
dc.subject.otherMultimodal fusiones_ES
dc.subject.otherHuman posees_ES
dc.subject.otherDeep learninges_ES
dc.titleMultimodal Human Pose Feature Fusion for Gait Recognition.es_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication046027b0-4274-40e8-b067-d162ba047b37
relation.isAuthorOfPublicationbed8ca48-652e-4212-8c3c-05bfdc85a378
relation.isAuthorOfPublication.latestForDiscovery046027b0-4274-40e8-b067-d162ba047b37

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PoseGaitFusion2023_ibPRIA.pdf
Size:
450.49 KB
Format:
Adobe Portable Document Format
Description:
Artículo
Download

Description: Artículo