The forbidden region self-organizing map neural network

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorDíaz-Ramos, Antonio
dc.contributor.authorLópez-Rubio, Ezequiel
dc.contributor.authorPalomo-Ferrer, Esteban José
dc.date.accessioned2024-09-24T07:38:49Z
dc.date.available2024-09-24T07:38:49Z
dc.date.issued2020
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractSelf-organizing maps are aimed to learn a representation of the input distribution which faithfully describes the topological relations among the clusters of the distribution. For some datasets and applications, it is known beforehand that some regions of the input space cannot contain any samples. Those are known as forbidden regions. In these cases, any prototype which lies in a forbidden region is meaningless. However, previous self-organizing models do not address this problem. In this work we propose a new self-organizing map model which is guaranteed to keep all prototypes out of a set of prespecified forbidden regions. Experimental results are reported, which show that our proposal outperforms the SOM both in terms of vector quantization error and quality of the learned topological maps.es_ES
dc.identifier.doi0.1109/TNNLS.2019.2900091
dc.identifier.urihttps://hdl.handle.net/10630/32962
dc.language.isoenges_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectInformáticaes_ES
dc.subjectRedes neuronales (Informática)es_ES
dc.subject.otherSelf-organizing mapses_ES
dc.subject.otherUnsupervised learninges_ES
dc.subject.otherForbidden regionses_ES
dc.subject.otherVector quantizationes_ES
dc.titleThe forbidden region self-organizing map neural networkes_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication8f322e14-68eb-4ca8-af0e-ae1e17ae331e
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublicationee7a0035-e256-42bb-ac83-bc46a618cd04
relation.isAuthorOfPublication.latestForDiscovery8f322e14-68eb-4ca8-af0e-ae1e17ae331e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
preprint.pdf
Size:
21.95 MB
Format:
Adobe Portable Document Format
Description:

Collections