A methodology for the development of soft sensors with Kafka-ML

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorChaves, Antonio
dc.contributor.authorMartín-Fernández, Cristian
dc.contributor.authorLlopis-Torres, Luis Manuel
dc.contributor.authorSoler-Castillo, Enrique
dc.contributor.authorDíaz-Rodríguez, Manuel
dc.date.accessioned2024-02-08T07:38:15Z
dc.date.available2024-02-08T07:38:15Z
dc.date.issued2023
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.descriptionSpringer en las obras colectivas permite postprint con 24 meses de embargoes_ES
dc.description.abstractAdvances in the Internet-of-Things (IoT) field have allowed a wide variety of devices to be connected and send information continuously to the Internet. Thanks to this increase in data communication, machine learning (ML) and data science have been able to be applied to analyze and extract valuable intelligence from the IoT. In this sense, the IoT has also contributed to improving the design and implementation of soft sensors. Soft sensors are used to predict features that are difficult to measure directly because the sensor to do so does not exist or is very expensive. IoT real-time monitoring can be used in conjunction with ML techniques to infer those parameters that are difficult to achieve with specific sensors. There exist methodologies for the development of soft sensors, but there is a lack of a common tool to support the design and implementation of them, covering the phases from model training to visualization of predictions. In this chapter, we present a methodology to support soft-sensor development based on Kafka-ML, an open-source framework to manage ML pipelines. Kafka-ML will allow researchers to develop, train, and validate ML models and visualize real-time predictions using streaming data. To demonstrate the viability of our proposal, we developed a soft sensor that predicts nitrate levels from river watersheds.es_ES
dc.identifier.citationChaves, A.J., Martín, C., Torres, L.L., Soler, E., Díaz, M. (2023). A Methodology for the Development of Soft Sensors with Kafka-ML. In: Sharma, R., Jeon, G., Zhang, Y. (eds) Data Analytics for Internet of Things Infrastructure. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-031-33808-3_17es_ES
dc.identifier.doi10.1007/978-3-031-33808-3_17
dc.identifier.urihttps://hdl.handle.net/10630/30035
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectInternet de los objetoses_ES
dc.subjectDetectoreses_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subject.otherSensorses_ES
dc.subject.otherIoTes_ES
dc.subject.otherMachine learninges_ES
dc.titleA methodology for the development of soft sensors with Kafka-MLes_ES
dc.typebook partes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationbf2870d3-5cc6-414d-8d71-60e242c18554
relation.isAuthorOfPublicationf2d224fc-65e7-4bba-9056-cbb88c2f3357
relation.isAuthorOfPublication8c6abfaa-76ac-455f-9e39-0e26a46c06fd
relation.isAuthorOfPublication87398907-4bbf-4287-8d0b-e2c84852c57f
relation.isAuthorOfPublication.latestForDiscoverybf2870d3-5cc6-414d-8d71-60e242c18554

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
art_ext.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Description: