MOODY: An ontology-driven framework for standardizing multi-objective evolutionary algorithms
Loading...
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Share
Center
Department/Institute
Abstract
The application of semantic technologies, particularly ontologies, in the realm of multi-objective evolutionary algorithms is overlook despite their effectiveness in knowledge representation. In this paper, we introduce MOODY, an ontology specifically tailored to formalize these kinds of algorithms, encompassing their respective parameters, and multi-objective optimization problems based on a characterization of their search space landscapes. MOODY is designed to be particularly applicable in automatic algorithm configuration, which involves the search of the parameters of an optimization algorithm to optimize its performance. In this context, we observe a notable absence of standardized components, parameters, and related considerations, such as problem characteristics and algorithm configurations. This lack of standardization introduces difficulties in the selection of valid component combinations and in the re-use of algorithmic configurations between different algorithm implementations. MOODY offers a means to infuse semantic annotations into the configurations found by automatic tools, enabling efficient querying of the results and seamless integration across diverse sources through their incorporation into a knowledge graph. We validate our proposal by presenting four case studies.
Description
Bibliographic citation
José F. Aldana-Martín, María del Mar Roldán-García, Antonio J. Nebro, José F. Aldana-Montes, MOODY: An ontology-driven framework for standardizing multi-objective evolutionary algorithms, Information Sciences, Volume 661, 2024, 120184, ISSN 0020-0255, https://doi.org/10.1016/j.ins.2024.120184
Collections
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional












