Real-time embedded eye detection system

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorRuiz-Beltrán, Camilo Andrés
dc.contributor.authorRomero-Garces, Adrian
dc.contributor.authorGonzález-García, Martín
dc.contributor.authorSánchez-Pedraza, Antonio
dc.contributor.authorRodríguez-Fernández, Juan Antonio
dc.contributor.authorBandera-Rubio, Antonio Jesús
dc.date.accessioned2024-02-08T10:15:00Z
dc.date.available2024-02-08T10:15:00Z
dc.date.issued2022-05
dc.departamentoTecnología Electrónica
dc.description.abstractThe detection of a person’s eyes is a basic task in applications as important as iris recognition in biometric identification or fatigue detection in driving assistance systems. Current commercial and research systems use software frameworks that require a dedicated computer, whose power consumption, size and price are significantly large. This paper presents a hardware-based embedded solution for eye detection in real-time. From an algorithmic point-of-view, the popular Viola–Jones approach has been redesigned to enable highly parallel, single-pass image-processing implementation. Synthesized and implemented in an All-Programmable System-on-Chip (AP SoC), this proposal allows us to process more than 88 frames per second (fps), taking the classifier less than 2 ms per image. Experimental validation has been successfully addressed in an iris recognition system that works with walking subjects. In this case, the prototype module includes a CMOS digital imaging sensor providing 16 Mpixels images, and it outputs a stream of detected eyes as 640 × 480 images. Experiments for determining the accuracy of the proposed system in terms of eye detection are performed in the CASIA-Iris-distance V4 database. Significantly, they show that the accuracy in terms of eye detection is 100%.es_ES
dc.identifier.citationCamilo A. Ruiz-Beltrán, Adrián Romero-Garcés, Martín González, Antonio Sánchez Pedraza, Juan A. Rodríguez-Fernández, Antonio Bandera, Real-time embedded eye detection system, Expert Systems with Applications, Volume 194, 2022, 116505, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2022.116505.es_ES
dc.identifier.doihttps://doi.org/10.1016/j.eswa.2022.116505
dc.identifier.urihttps://hdl.handle.net/10630/30087
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectOjos - Reconocimientoes_ES
dc.subject.otherEye detectiones_ES
dc.subject.otherViola–Jones algorithmes_ES
dc.subject.otherAll programmable System-on-Chipes_ES
dc.titleReal-time embedded eye detection systemes_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication391926cd-f73f-4843-9f27-a39094071447
relation.isAuthorOfPublicationc5a3f5dd-3013-4456-9e36-f0d60469c16c
relation.isAuthorOfPublication2c4fc69e-b9aa-480d-a764-6293140c98d3
relation.isAuthorOfPublication.latestForDiscovery391926cd-f73f-4843-9f27-a39094071447

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2022_ESWA_RealTime Embedded eye detection system.pdf
Size:
3.18 MB
Format:
Adobe Portable Document Format
Description:

Collections