Identifying employee engagement drivers using multilayer perceptron classifier and sensitivity analysis

dc.contributor.authorNúñez-Sánchez, José Manuel
dc.contributor.authorMolina-Gómez, Jesús
dc.contributor.authorMercade-Mele, Pere
dc.contributor.authorFernández Miguélez, Sergio Manuel
dc.date.accessioned2024-12-20T11:38:15Z
dc.date.available2024-12-20T11:38:15Z
dc.date.issued2024-12-16
dc.departamentoEconomía y Administración de Empresas
dc.description.abstractEmployee engagement is increasingly important, as it can become a competitive advantage for companies, helping them increase productivity, attract talent and improve customer satisfaction. Numerous works have studied the drivers that encourage employee engagement and have developed models to identify them. However, the existing models have limitations, and the literature demands more research on the subject since the precision of the models still needs to improve. This paper presents a computational model that can estimate the drivers of employee engagement accurately. A sample of 205 Spanish employees was used, allowing us to consider a wide sectorial heterogeneity. Different methods have been applied to the sample under study to achieve a high-precision model, selecting drivers using the Multilayer Perceptron Classifier and quantifying the impact of the drivers with Sensitivity Analysis. The results obtained in this research present important implications for the managerial improvement of human resources departments by facilitating the design of strategies and policies that foster employee engagement, which significantly influences corporate results.es_ES
dc.description.sponsorshipFunding for open access publishing: Universidad Málaga/CBUAes_ES
dc.identifier.citationNúñez-Sánchez, J.M., Molina-Gómez, J., Mercadé-Melé, P. , Fernández-Miguélez, Sergio M.(2024). Identifying employee engagement drivers using multilayer perceptron classifier and sensitivity analysis. Eurasian Bus Reves_ES
dc.identifier.doi10.1007/s40821-024-00283-6
dc.identifier.urihttps://hdl.handle.net/10630/35835
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAttribution-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectCapacidad de trabajo - Evaluaciónes_ES
dc.subjectGestión de personales_ES
dc.subject.otherEmployee engagementes_ES
dc.subject.otherMultilayer perceptrones_ES
dc.subject.otherCompetitive advantagees_ES
dc.subject.otherSensitivity analysises_ES
dc.titleIdentifying employee engagement drivers using multilayer perceptron classifier and sensitivity analysises_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication3e211858-46f8-4b23-b0ef-74bc1d12618b
relation.isAuthorOfPublicationc2cbf5d7-9558-4d0f-8fff-4e767e614268
relation.isAuthorOfPublicationcae05b40-272c-4bf9-a0de-d75f92fe4d41
relation.isAuthorOfPublication.latestForDiscovery3e211858-46f8-4b23-b0ef-74bc1d12618b

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Identifying employee engagement drivers using multilayer perceptron classifier and sensitivity analysis.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal

Collections