Real-Time Embedded Eye Image Defocus Estimation for Iris Biometrics

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorRuiz-Beltrán, Camilo Andrés
dc.contributor.authorRomero-Garces, Adrian
dc.contributor.authorGonzález-García, Martín
dc.contributor.authorMarfil-Robles, Rebeca
dc.contributor.authorBandera-Rubio, Antonio Jesús
dc.date.accessioned2024-01-30T10:31:39Z
dc.date.available2024-01-30T10:31:39Z
dc.date.issued2023-08-29
dc.departamentoTecnología Electrónica
dc.description.abstractOne of the main challenges faced by iris recognition systems is to be able to work with people in motion, where the sensor is at an increasing distance (more than 1 m) from the person. The ultimate goal is to make the system less and less intrusive and require less cooperation from the person. When this scenario is implemented using a single static sensor, it will be necessary for the sensor to have a wide field of view and for the system to process a large number of frames per second (fps). In such a scenario, many of the captured eye images will not have adequate quality (contrast or resolution). This paper describes the implementation in an MPSoC (multiprocessor system-on-chip) of an eye image detection system that integrates, in the programmable logic (PL) part, a functional block to evaluate the level of defocus blur of the captured images. In this way, the system will be able to discard images that do not have the required focus quality in the subsequent processing steps. The proposals were successfully designed using Vitis High Level Synthesis (VHLS) and integrated into an eye detection framework capable of processing over 57 fps working with a 16 Mpixel sensor. Using, for validation, an extended version of the CASIA-Iris-distance V4 database, the experimental evaluation shows that the proposed framework is able to successfully discard unfocused eye images. But what is more relevant is that, in a real implementation, this proposal allows discarding up to 97% of out-of-focus eye images, which will not have to be processed by the segmentation and normalised iris pattern extraction blocks.es_ES
dc.description.sponsorshipFunding for open Access charge: Universidad de Málaga / CBUAes_ES
dc.identifier.citationRuiz-Beltrán, C. A., Romero-Garcés, A., González-García, M., Marfil, R., & Bandera, A. (2023). Real-Time embedded eye image defocus estimation for iris biometrics. Sensors, 23(17), 7491. https://doi.org/10.3390/s23177491es_ES
dc.identifier.doihttps://doi.org/10.3390/s23177491
dc.identifier.urihttps://hdl.handle.net/10630/29366
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectVisión parciales_ES
dc.subjectOftalmologíaes_ES
dc.subjectBiometríaes_ES
dc.subject.otherEye detectiones_ES
dc.subject.otherHaar-like featureses_ES
dc.subject.otherConvolution kernelses_ES
dc.subject.otherDefocus testes_ES
dc.subject.otherUltrascale+ MP SoCes_ES
dc.titleReal-Time Embedded Eye Image Defocus Estimation for Iris Biometricses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication391926cd-f73f-4843-9f27-a39094071447
relation.isAuthorOfPublicationba99a400-b2b7-4ed3-a2f2-b0f2a75a5f86
relation.isAuthorOfPublication2c4fc69e-b9aa-480d-a764-6293140c98d3
relation.isAuthorOfPublication.latestForDiscovery391926cd-f73f-4843-9f27-a39094071447

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors-23-07491.pdf
Size:
12.4 MB
Format:
Adobe Portable Document Format
Description:

Collections