Content-based image retrieval by ensembles of deep learning object classifiers.

dc.contributor.authorHamreras, Safa
dc.contributor.authorBoucheham, Bachir
dc.contributor.authorMolina-Cabello, Miguel Ángel
dc.contributor.authorBenítez-Rochel, Rafaela
dc.contributor.authorLópez-Rubio, Ezequiel
dc.date.accessioned2024-02-02T10:47:19Z
dc.date.available2024-02-02T10:47:19Z
dc.date.created2024
dc.date.issued2020-05-20
dc.departamentoLenguajes y Ciencias de la Computación
dc.descriptionCopyright Owner. Versión definitiva disponible en el DOI indicado. Hamreras, S., Boucheham, B., Molina-Cabello, M. A., Benitez-Rochel, R., & Lopez-Rubio, E. (2020). Content based image retrieval by ensembles of deep learning object classifiers. Integrated computer-aided engineering, 27(3), 317-331.es_ES
dc.description.abstractEnsemble learning has demonstrated its efficiency in many computer vision tasks. In this paper, we address this paradigm within content based image retrieval (CBIR). We propose to build an ensemble of convolutional neural networks (CNNs), either by training the CNNs on different bags of images, or by using CNNs trained on the same dataset, but having different architectures. Each network is used to extract the class probability vectors from images to use them as representations. The final image representation is then generated by combining the extracted class probability vectors from the built ensemble. We show that the use of CNN ensembles is very efficient in generating a powerful image representation compared to individual CNNs. Moreover, we propose an Averarge Query Expansion technique for our proposal to enhance the retrieval results. Several experiments were conducted to extensively evaluate the application of ensemble learning in CBIR. Results in terms of precision, recall, and mean average precision show the outperformance of our proposal compared to the state of the art.es_ES
dc.identifier.citationHamreras, S., Boucheham, B., Molina-Cabello, M. A., Benítez-Rochel, R., & López-Rubio, E. (2020). Content based image retrieval by ensembles of deep learning object classifiers. Integrated Computer-Aided Engineering, 27(3), 317–331. https://doi.org/10.3233/ICA-200625es_ES
dc.identifier.doi10.3233/ICA-200625
dc.identifier.urihttps://hdl.handle.net/10630/29702
dc.language.isoenges_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectRedes neuronales (Informática)es_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectImágenes - Recuperaciónes_ES
dc.subject.otherContent based image retrievales_ES
dc.subject.otherEnsemble learninges_ES
dc.subject.otherConvolutional neural networkses_ES
dc.titleContent-based image retrieval by ensembles of deep learning object classifiers.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationbd8d08dc-ffee-4da1-9656-28204211eb1a
relation.isAuthorOfPublication6280dc3f-86b0-49c7-9979-9d2e9e9f8e22
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublication.latestForDiscoverybd8d08dc-ffee-4da1-9656-28204211eb1a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ICAE 2020 postprint.pdf
Size:
6.17 MB
Format:
Adobe Portable Document Format
Description:

Collections