Random Error Sampling-based Recurrent Neural Network Architecture Optimization.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorCamero Unzueta, Andres
dc.contributor.authorToutouh-el-Alamin, Jamal
dc.contributor.authorAlba-Torres, Enrique
dc.date.accessioned2024-09-16T10:04:57Z
dc.date.available2024-09-16T10:04:57Z
dc.date.issued2020-09-15
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.descriptionPolítica de acceso abierto tomada de: https://v2.sherpa.ac.uk/id/publication/4626es_ES
dc.description.abstractRecurrent neural networks are good at solving prediction problems. However, finding a network that suits a problem is quite hard because their performance is strongly affected by their architecture configuration. Automatic architecture optimization methods help to find the most suitable design, but they are not extensively adopted because of their high computational cost. In this work, we introduce the Random Error Sampling-based Neuroevolution (RESN), an evolutionary algorithm that uses the mean absolute error random sampling, a training-free approach to predict the expected performance of an artificial neural network, to optimize the architecture of a network. We empirically validate our proposal on four prediction problems, and compare our technique to training-based architecture optimization techniques, neuroevolutionary approaches, and expert designed solutions. Our findings show that we can achieve state-of-the-art error performance and that we reduce by half the time needed to perform the optimization.es_ES
dc.identifier.citationCamero, A., Toutouh, J., & Alba, E. (2020). Random error sampling-based recurrent neural network architecture optimization. Engineering Applications of Artificial Intelligence, 96, 103946.es_ES
dc.identifier.doi10.1016/j.engappai.2020.103946
dc.identifier.urihttps://hdl.handle.net/10630/32556
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectComputación evolutivaes_ES
dc.subjectRedes neuronales (Informática)es_ES
dc.subjectProgramación heurísticaes_ES
dc.subject.otherNeuroevolutiones_ES
dc.subject.otherMetaheuristicses_ES
dc.subject.otherRecurrent neural networkes_ES
dc.subject.otherEvolutionary algorithmses_ES
dc.titleRandom Error Sampling-based Recurrent Neural Network Architecture Optimization.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationa18a3827-4066-4bb2-9338-7e7510191857
relation.isAuthorOfPublicatione8596ab5-92f0-420d-a394-17d128c965da
relation.isAuthorOfPublication.latestForDiscoverya18a3827-4066-4bb2-9338-7e7510191857

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2020_EAAI_mod.pdf
Size:
239.31 KB
Format:
Adobe Portable Document Format
Description:
Artículo - Preprint
Download

Description: Artículo - Preprint

Collections