Piecewise Polynomial Activation Functions for Feedforward Neural Networks.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorLópez-Rubio, Ezequiel
dc.contributor.authorOrtega-Zamorano, Francisco
dc.contributor.authorDomínguez-Merino, Enrique
dc.contributor.authorMuñoz-Pérez, José
dc.date.accessioned2025-10-16T08:46:15Z
dc.date.available2025-10-16T08:46:15Z
dc.date.issued2019-01-10
dc.departamentoLenguajes y Ciencias de la Computaciónes_ES
dc.descriptionhttps://openpolicyfinder.jisc.ac.uk/id/publication/17302es_ES
dc.description.abstractSince the origins of artificial neural network research, many models of feedforward networks have been proposed. This paper presents an algorithm which adapts the shape of the activation function to the training data, so that it is learned along with the connection weights. The activation function is interpreted as a piecewise polynomial approximation to the distribution function of the argument of the activation function. An online learning procedure is given, and it is formally proved that it makes the training error decrease or stay the same except for extreme cases. Moreover, the model is computationally simpler than standard feedforward networks, so that it is suitable for implementation on FPGAs and microcontrollers. However, our present proposal is limited to two-layer, one-output-neuron architectures due to the lack of differentiability of the learned activation functions with respect to the node locations. Experimental results are provided, which show the performance of the proposal algorithm for classification and regression applications.es_ES
dc.identifier.citationLópez-Rubio, E., Ortega-Zamorano, F., Domínguez, E. et al. Piecewise Polynomial Activation Functions for Feedforward Neural Networks. Neural Process Lett 50, 121–147 (2019).es_ES
dc.identifier.doi10.1007/s11063-018-09974-4
dc.identifier.urihttps://hdl.handle.net/10630/40266
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectRedes neuronales (Informática)es_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectAnálisis de regresiónes_ES
dc.subject.otherActivation functionses_ES
dc.subject.otherFeedforward neural networkses_ES
dc.subject.otherSupervised learninges_ES
dc.subject.otherRegressiones_ES
dc.subject.otherClassificationes_ES
dc.titlePiecewise Polynomial Activation Functions for Feedforward Neural Networks.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublicationee99eb5a-8e94-462f-9bea-2da1832bedcf
relation.isAuthorOfPublicationbed2c8b7-59f5-4650-9f12-737c8346a54d
relation.isAuthorOfPublication.latestForDiscoveryae409266-06a3-4cd4-84e8-fb88d4976b3f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PDF_J09_2019.pdf
Size:
767.19 KB
Format:
Adobe Portable Document Format
Description:

Collections