On the sharpness of some quantitative Muckenhoupt-Wheeden inequalities.

dc.centroFacultad de Cienciases_ES
dc.contributor.authorLerner, Andrei
dc.contributor.authorLi, Kangwei
dc.contributor.authorOmbrosi, Sheldy J.
dc.contributor.authorRivera Ríos, Israel P.
dc.date.accessioned2024-12-11T07:30:33Z
dc.date.available2024-12-11T07:30:33Z
dc.date.issued2024
dc.departamentoAnálisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada
dc.description.abstract. In the recent work [Cruz-Uribe et al. (2021)] it was obtained that |{x ∈ R d : w(x)|G(f w−1 )(x)| > α}| ≲ [w] 2 A1 α Z Rd |f |dx both in the matrix and scalar settings, where G is either the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. In this note we show that the quadratic dependence on [w]A1 is sharp. This is done by constructing a sequence of scalar-valued weights with blowing up characteristics so that the corresponding bounds for the Hilbert transform and maximal function are exactly quadratic.es_ES
dc.identifier.citationAndrei K. Lerner; Kangwei Li; Sheldy Ombrosi; Israel P. Rivera-Ríos. On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1253-1260. doi : 10.5802/crmath.638. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.638/es_ES
dc.identifier.doi10.5802/crmath.638
dc.identifier.urihttps://hdl.handle.net/10630/35569
dc.language.isoenges_ES
dc.publisherAcadémie des scienceses_ES
dc.rightsAttribution 4.0 Internacional
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectDesigualdades (Matemáticas)es_ES
dc.subject.otherMatrix weightses_ES
dc.subject.otherQuantitative boundses_ES
dc.subject.otherEndpoint estimateses_ES
dc.titleOn the sharpness of some quantitative Muckenhoupt-Wheeden inequalities.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CRMATH_2024__362_G10_1253_0.pdf
Size:
391.22 KB
Format:
Adobe Portable Document Format
Description:

Collections