Moving object detection in noisy video sequences using deep convolutional disentangled representations.

dc.contributor.authorGarcía-González, Jorge
dc.contributor.authorLuque-Baena, Rafael Marcos
dc.contributor.authorOrtiz-de-Lazcano-Lobato, Juan Miguel
dc.contributor.authorLópez-Rubio, Ezequiel
dc.date.accessioned2022-10-25T07:21:36Z
dc.date.available2022-10-25T07:21:36Z
dc.date.issued2022
dc.departamentoLenguajes y Ciencias de la Computación
dc.descriptionUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.description.abstractNoise robustness is crucial when approaching a moving de- tection problem since image noise is easily mistaken for movement. In order to deal with the noise, deep denoising autoencoders are commonly proposed to be applied on image patches with an inherent disadvantage with respect to the segmentation resolution. In this work, a fully convolutional autoencoder-based moving detection model is proposed in order to deal with noise with no patch extraction required. Different autoencoder structures and training strategies are also tested to get insights into the best network design ap- proach.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/25286
dc.language.isoenges_ES
dc.relation.eventdate16/10/2022es_ES
dc.relation.eventplaceBurdeos, Franciaes_ES
dc.relation.eventtitleIEEE International Conference on Image Processinges_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectProcesado de imágeneses_ES
dc.subject.otherMoving Object Detectiones_ES
dc.subject.otherForeground Segmentationes_ES
dc.subject.otherAutoencoderses_ES
dc.titleMoving object detection in noisy video sequences using deep convolutional disentangled representations.es_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication15881531-a431-477b-80d6-532058d8377c
relation.isAuthorOfPublication5d96d5b2-9546-44c8-a1b3-1044a3aee34f
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublication.latestForDiscovery15881531-a431-477b-80d6-532058d8377c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
icip_2022_preprint.pdf
Size:
337.2 KB
Format:
Adobe Portable Document Format
Description: