Ordering distributions on a finitely generated cone

dc.centroFacultad de Ciencias Económicas y Empresarialeses_ES
dc.contributor.authorAbul Naga, Ramses H
dc.date.accessioned2025-10-29T11:54:53Z
dc.date.available2025-10-29T11:54:53Z
dc.date.issued2025
dc.departamentoTeoría e Historia Económicaes_ES
dc.description.abstractOne large class of relations used in the measurement of social welfare and risk consists of relations induced by finitely generated cones. Within this class, we develop a general approach to investigate the ordering of distributions. We provide an equivalence between the statement that distributions x and y are ordered, and (1) the possibility of expressing x - y as a positive combination of a subset of linearly independent vectors from the generators of the cone, (2) the existence of a relation defined on a simplicial cone such that x and y are ordered by this latter relation, (3) the existence of a generalized inverse G of the matrix whose columns generate the cone, such that the product of G and the vector x - y results in a non-negative vector. We illustrate the results in the context of a discrete version of the cone of inframodular transfers.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUAes_ES
dc.identifier.citationAbul Naga, R.H. (2025). Ordering distributions on a finitely generated cone. Social Choice Welfarees_ES
dc.identifier.doi10.1007/s00355-025-01620-y
dc.identifier.urihttps://hdl.handle.net/10630/40499
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectEconomía matemáticaes_ES
dc.subjectToma de decisioneses_ES
dc.subject.otherOrdering distributionses_ES
dc.subject.otherFinitely generated conees_ES
dc.titleOrdering distributions on a finitely generated conees_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s00355-025-01620-y.pdf
Size:
476.76 KB
Format:
Adobe Portable Document Format
Description:

Collections