Vision-based techniques for automatic marine plankton classification.

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorSosa-Trejo, David
dc.contributor.authorBandera-Rubio, Antonio Jesús
dc.contributor.authorGonzález-García, Martín
dc.contributor.authorHernández León, Santiago
dc.date.accessioned2024-02-08T10:14:00Z
dc.date.available2024-02-08T10:14:00Z
dc.date.issued2023-03-25
dc.departamentoTecnología Electrónica
dc.description.abstractPlankton are an important component of life on Earth. Since the 19th century, scientists have attempted to quantify species distributions using many techniques, such as direct counting, sizing, and classification with microscopes. Since then, extraordinary work has been performed regarding the development of plankton imaging systems, producing a massive backlog of images that await classification. Automatic image processing and classification approaches are opening new avenues for avoiding time-consuming manual procedures. While some algorithms have been adapted from many other applications for use with plankton, other exciting techniques have been developed exclusively for this issue. Achieving higher accuracy than that of human taxonomists is not yet possible, but an expeditious analysis is essential for discovering the world beyond plankton. Recent studies have shown the imminent development of real-time, in situ plankton image classification systems, which have only been slowed down by the complex implementations of algorithms on low-power processing hardware. This article compiles the techniques that have been proposed for classifying marine plankton, focusing on automatic methods that utilize image processing, from the beginnings of this field to the present day.es_ES
dc.identifier.citationSosa-Trejo, D., Bandera, A., González, M. et al. Vision-based techniques for automatic marine plankton classification. Artif Intell Rev 56, 12853–12884 (2023).es_ES
dc.identifier.doi10.1007/s10462-023-10456-w
dc.identifier.urihttps://hdl.handle.net/10630/30086
dc.language.isoenges_ES
dc.rightsAtribución 4.0 Internacional
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectPlancton marinoes_ES
dc.subjectReconocimiento de formas (Informática)es_ES
dc.subjectProcesado de imágeneses_ES
dc.subject.otherMarine planktones_ES
dc.subject.otherPattern recognitiones_ES
dc.subject.otherImage processinges_ES
dc.subject.otherPlankton classificationes_ES
dc.titleVision-based techniques for automatic marine plankton classification.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication2c4fc69e-b9aa-480d-a764-6293140c98d3
relation.isAuthorOfPublication391926cd-f73f-4843-9f27-a39094071447
relation.isAuthorOfPublication.latestForDiscovery2c4fc69e-b9aa-480d-a764-6293140c98d3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2023_ArtIntRev_Vision-based techniques for automatic marine plankton classification.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
Description:

Collections