Multiple Testing in Remote Sensing: Addressing the Elephant in the Room.

dc.centroFacultad de Filosofía y Letrases_ES
dc.contributor.authorGutiérrez-Hernández, Oliver
dc.contributor.authorGarcía, Luís V.
dc.date.accessioned2025-09-17T13:01:39Z
dc.date.available2025-09-17T13:01:39Z
dc.date.issued2024-07-11
dc.departamentoGeografíaes_ES
dc.descriptionUpdate (17/09/2025): This is an improved version of our SSRN preprint, in which we refined the conceptual framework, strengthened the treatment of multiple testing with a focus on false discovery rate (FDR) control, expanded the literature review, and included supplementary material with R code.es_ES
dc.description.abstractIn environmental remote sensing, statistical tests are often conducted at the pixel level, generating thousands of p-values and substantially increasing the risk of Type I errors. Traditional multiple testing corrections aim to control the probability of any false positives, but often at the cost of drastically reduced statistical power. In contrast, false discovery rate (FDR) control limits the proportion of false positives among significant results while preserving power. It is widely used in image-based disciplines such as neuroimaging and, more broadly, medical imaging, where error control is critical. However, its adoption in remote sensing remains unclear. We conducted a Scopus-based review of twenty years of literature (2004–2023) in remote sensing journals to assess the use of FDR control in spatiotemporal trend analyses, with particular attention to studies employing the Mann-Kendall test, a non-parametric method widely used for detecting monotonic trends at the pixel level. Our results reveal that only 0.03% of remote sensing articles cited the seminal Benjamini–Hochberg (1995) method, and none of the studies using pixel-wise Mann-Kendall testing explicitly applied FDR control. This striking absence highlights a critical risk of overestimating significance in large-scale remote sensing analyses, especially as increasing data precision demands more rigorous error control. We call for routinely incorporating FDR procedures into remote sensing workflows to control the inflation of Type I error in large-scale multiple testing.es_ES
dc.identifier.citationGutiérrez Hernández, Oliver and García, Luis V., Multiple Testing in Remote Sensing: Addressing the Elephant in the Room (September 17, 2025). Available at SSRN: https://ssrn.com/abstract=4891512 or http://dx.doi.org/10.2139/ssrn.4891512es_ES
dc.identifier.doi10.2139/ssrn.4891512
dc.identifier.urihttps://hdl.handle.net/10630/39964
dc.language.isoenges_ES
dc.publisherSSRNes_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectAnálisis multivariantees_ES
dc.subjectEstructuras de datos (Informática)es_ES
dc.subjectFicheros de datoses_ES
dc.subjectTeledetecciónes_ES
dc.subject.othermultiple hypothesis testinges_ES
dc.subject.othermultiplicityes_ES
dc.subject.othergridded dataes_ES
dc.subject.otherspatiotemporal trendses_ES
dc.subject.otherstatistical significancees_ES
dc.subject.otherp-valueses_ES
dc.subject.otherfalse discovery rate (FDR)es_ES
dc.subject.otherenvironmental remote sensinges_ES
dc.titleMultiple Testing in Remote Sensing: Addressing the Elephant in the Room.es_ES
dc.title.alternativeMultiple Testing in Remote Sensinges_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Manuscript.pdf
Size:
494.9 KB
Format:
Adobe Portable Document Format
Description:
Manuscript
Download

Description: Manuscript

Loading...
Thumbnail Image
Name:
Supplementary Material.zip
Size:
515 KB
Format:
Archivo comprimido zip
Description:
Supplementary Material
Download

Description: Supplementary Material

Collections