The role of nitride species in the gas-phase furfural hydrogenation activity of supported nickel catalysts

Loading...
Thumbnail Image

Files

Manuscript_G1_3.pdf (1.1 MB)

Description: Artículo principal

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier B.V.

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

A series of C-rich nickel nitride nanoparticles supported on silica has been prepared by the urea glass route, with urea as nitrogen and carbon source, and characterized by different physico-chemical techniques. They consist of Ni3N nanoparticles of 20-25 nm embedded into a carbonaceous matrix. These catalysts are much more active and stable than a nickel supported silica catalyst, which drastically deactivates. The supported Ni3N catalyst, with a 10 wt.% Ni, maintained a furfural conversion higher than 80% after 5 h of time-on-stream, at 170 ⁰C, with a high WHSV of 6 h-1. Complete initial furfural conversion values were observed at reaction temperatures varying from 170 to 230⁰C, and the selectivity toward furan and furfuryl alcohol (decarbonylation and hydrogenation products, respectively) was tuned by varying this temperature. After the catalytic tests, XPS and XRD have demonstrated that nanoparticles are stable, although carbonaceous deposits were also detected.

Description

Bibliographic citation

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional