Automatic feature scaling and selection for support vector machine classification with functional data.

dc.contributor.authorJiménez-Cordero, María Asunción
dc.contributor.authorMaldonado-Alarcón, Sebastián
dc.date.accessioned2024-09-20T10:30:24Z
dc.date.available2024-09-20T10:30:24Z
dc.date.issued2020
dc.departamentoAnálisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada
dc.descriptionPolítica de acceso abierto tomada de: https://v2.sherpa.ac.uk/id/publication/11767es_ES
dc.description.abstractFunctional Data Analysis (FDA) has become a very important field in recent years due to its wide range of applications. However, there are several real-life applications in which hybrid functional data appear, i.e., data with functional and static covariates. The classification of such hybrid functional data is a challenging problem that can be handled with the Support Vector Machine (SVM). Moreover, the selection of the most informative features may yield to drastic improvements in the classification rates. In this paper, an embedded feature selection approach for SVM classification is proposed, in which the isotropic Gaussian kernel is modified by associating a bandwidth to each feature. The bandwidths are jointly optimized with the SVM parameters, yielding an alternating optimization approach. The effectiveness of our methodology was tested on benchmark data sets. Indeed, the proposed method achieved the best average performance when compared to 17 other feature selection and SVM classification approaches. A comprehensive sensitivity analysis of the parameters related to our proposal was also included, confirming its robustness.es_ES
dc.identifier.citationJiménez-Cordero, A., Maldonado, S. Automatic feature scaling and selection for support vector machine classification with functional data. Appl Intell 51, 161–184 (2021). https://doi.org/10.1007/s10489-020-01765-6es_ES
dc.identifier.doi10.1007/s10489-020-01765-6
dc.identifier.urihttps://hdl.handle.net/10630/32733
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subject.otherFeature selectiones_ES
dc.subject.otherFunctional dataes_ES
dc.subject.otherClassificationes_ES
dc.subject.otherFeature scalinges_ES
dc.subject.otherSupport vector machineses_ES
dc.titleAutomatic feature scaling and selection for support vector machine classification with functional data.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationa09d0bae-ea7c-415a-8753-b996ca8979f0
relation.isAuthorOfPublication.latestForDiscoverya09d0bae-ea7c-415a-8753-b996ca8979f0

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Automatic-feature-scaling.pdf
Size:
752.48 KB
Format:
Adobe Portable Document Format
Description:

Collections