Ensemble-based genetic algorithm explainer with automized image segmentation: A case study on melanoma detection dataset

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorNematzadeh, Hossein
dc.contributor.authorGarcía-Nieto, José Manuel
dc.contributor.authorNavas-Delgado, Ismael
dc.contributor.authorAldana-Montes, José Francisco
dc.date.accessioned2023-04-24T11:15:55Z
dc.date.available2023-04-24T11:15:55Z
dc.date.issued2023
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.description.abstractExplainable Artificial Intelligence (XAI) makes AI understandable to the human user particularly when the model is complex and opaque. Local Interpretable Model-agnostic Explanations (LIME) has an image explainer package that is used to explain deep learning models. The image explainer of LIME needs some parameters to be manually tuned by the expert in advance, including the number of top features to be seen and the number of superpixels in the segmented input image. This parameter tuning is a time-consuming task. Hence, with the aim of developing an image explainer that automizes image segmentation, this paper proposes Ensemblebased Genetic Algorithm Explainer (EGAE) for melanoma cancer detection that automatically detects and presents the informative sections of the image to the user. EGAE has three phases. First, the sparsity of chromosomes in GAs is determined heuristically. Then, multiple GAs are executed consecutively. However, the difference between these GAs are in different number of superpixels in the input image that result in different chromosome lengths. Finally, the results of GAs are ensembled using consensus and majority votings. This paper also introduces how Euclidean distance can be used to calculate the distance between the actual explanation (delineated by experts) and the calculated explanation (computed by the explainer) for accuracy measurement. Experimental results on a melanoma dataset show that EGAE automatically detects informative lesions, and it also improves the accuracy of explanation in comparison with LIME efficiently. The python codes for EGAE, the ground truths delineated by clinicians, and the melanoma detection dataset are available at https://github.com/KhaosResearch/EGAEes_ES
dc.description.sponsorshipThis work has been partially funded by grant PID2020-112540RBC41 (funded by MCIN/AEI/10.13039/501100011033/, Spain), AETHERUMA, Spain (A smart data holistic approach for context-aware data analytics: semantics and context exploitation). Funding for open access charge: Universidad de Málaga/CBUA. Additionally, we thank Dr. Miguel Ángel Berciano Guerrero from Unidad de Oncología Intercentros, Hospitales Univesitarios Regional 𝑦 Virgen de la Victoria de Málaga, and Instituto de Investigaciones Biomédicas (IBIMA), Málaga, Spain, for his support in images selection and general medical orientation in the particular case of Melanoma.es_ES
dc.identifier.citationNematzadeh, García-Nieto, J., Navas-Delgado, I., & Aldana-Montes, J. F. (2023). Ensemble-based genetic algorithm explainer with automized image segmentation: A case study on melanoma detection dataset. Computers in Biology and Medicine, 155, 106613–106613. https://doi.org/10.1016/j.compbiomed.2023.106613es_ES
dc.identifier.doi10.1016/j.compbiomed.2023.106613
dc.identifier.urihttps://hdl.handle.net/10630/26388
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectInteligencia artificial - Aplicaciones médicases_ES
dc.subjectMelanomaes_ES
dc.subject.otherExplainable Artificial Intelligencees_ES
dc.subject.otherLocal Interpretable Model-agnostices_ES
dc.subject.otherExplanationses_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherGenetic algorithmes_ES
dc.subject.otherMelanoma datasetes_ES
dc.titleEnsemble-based genetic algorithm explainer with automized image segmentation: A case study on melanoma detection datasetes_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication04a9ec70-bfda-4089-b4d7-c24dd0870d17
relation.isAuthorOfPublication4e298ef9-8825-4aa8-be87-ac0f8adbf1b7
relation.isAuthorOfPublication7eac9d6a-0152-4268-8207-ea058c82e531
relation.isAuthorOfPublication.latestForDiscovery04a9ec70-bfda-4089-b4d7-c24dd0870d17

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0010482523000781-main.pdf
Size:
4.33 MB
Format:
Adobe Portable Document Format
Description:

Collections