Hankel matrices acting on the Hardy space H1 and on Dirichlet spaces.
| dc.centro | Facultad de Ciencias | es_ES |
| dc.contributor.author | Girela-Álvarez, Daniel | |
| dc.contributor.author | Merchán-Álvarez, Noel | |
| dc.date.accessioned | 2024-01-25T08:18:47Z | |
| dc.date.available | 2024-01-25T08:18:47Z | |
| dc.date.created | 2018-04-06 | |
| dc.date.issued | 2018-12-03 | |
| dc.departamento | Matemática Aplicada | |
| dc.description | Política de acceso abierto tomada de: https://v2.sherpa.ac.uk/id/publication/17457 | es_ES |
| dc.description.abstract | If μ is a positive Borel measure on the interval [0, 1) we let H_μ be the Hankel matrix H_μ={ μ_{n,k} }_{n,k} with entries μ_{n,k} =μ_{n+k} where μ_n denotes the moment of order n of μ. This matrix induces formally an operator on the space of all analytic functions in the unit disc D. When μ is the Lebesgue measure on [0,1) the operator H_μ is the classical Hilbert operator H which is bounded on H^p if 1<p< ∞, but not on H^1. J. Cima has recently proved that H is an injective bounded operator from H^1 into the space C of Cauchy transforms of measures on the unit circle. The operator H_μ is known to be well defined on H^1 if and only if μ is a Carleson measure and in such a case we have that H_μ(H^1) is contained in C. Furthermore, it is bounded from H^1 into itself if and only if μ is a 1-logarithmic 1-Carleson measure. In this paper we prove that when μ is a 1-logarithmic 1-Carleson measure then H_μ actually maps H^1 into the space of Dirichlet type D^1_0. We discuss also the range of H_μ on H^1 when μ is an α-logarithmic 1-Carleson measure (0<α<1). We study also the action of the operators H_μ on Bergman spaces and on Dirichlet spaces. | es_ES |
| dc.description.sponsorship | - Proyecto del Ministerio de Economía y Competitividad MTM2014-52865-P. - Proyecto de la Junta de Andalucía FQM-210. - Ayuda FPU del Ministerio de Educación, Cultura y Deporte FPU2013/01478. | es_ES |
| dc.identifier.citation | Girela, D., Merchán, N. Hankel matrices acting on the Hardy space and on Dirichlet spaces. Rev Mat Complut 32, 799–822 (2019). https://doi.org/10.1007/s13163-018-0288-z | es_ES |
| dc.identifier.doi | 10.1007/s13163-018-0288-z | |
| dc.identifier.uri | https://hdl.handle.net/10630/29170 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Hankel, Operadores de | es_ES |
| dc.subject | Hilbert, Operadores en espacio de | es_ES |
| dc.subject | Álgebra lineal | es_ES |
| dc.subject.other | Hankel matrix | es_ES |
| dc.subject.other | Generalized Hilbert operator | es_ES |
| dc.subject.other | Hardy spaces | es_ES |
| dc.subject.other | Cauchy transforms | es_ES |
| dc.subject.other | Weighted Bergman spaces | es_ES |
| dc.subject.other | Dirichlet spaces | es_ES |
| dc.subject.other | Duality | es_ES |
| dc.title | Hankel matrices acting on the Hardy space H1 and on Dirichlet spaces. | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | AM | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 20358c49-a3a2-47fd-892b-c73fdbc2870d | |
| relation.isAuthorOfPublication | 702b63a6-e9ef-456c-abc1-e14bf3da3166 | |
| relation.isAuthorOfPublication.latestForDiscovery | 20358c49-a3a2-47fd-892b-c73fdbc2870d |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- GM3-Hmu.Imu-Hardy-Dir-REV-October-24-2018.pdf
- Size:
- 402.26 KB
- Format:
- Adobe Portable Document Format
- Description:
- Versión aceptada antes de ser publicada
Description: Versión aceptada antes de ser publicada

