Hankel matrices acting on the Hardy space H1 and on Dirichlet spaces.

dc.centroFacultad de Cienciases_ES
dc.contributor.authorGirela-Álvarez, Daniel
dc.contributor.authorMerchán-Álvarez, Noel
dc.date.accessioned2024-01-25T08:18:47Z
dc.date.available2024-01-25T08:18:47Z
dc.date.created2018-04-06
dc.date.issued2018-12-03
dc.departamentoMatemática Aplicada
dc.descriptionPolítica de acceso abierto tomada de: https://v2.sherpa.ac.uk/id/publication/17457es_ES
dc.description.abstractIf μ is a positive Borel measure on the interval [0, 1) we let H_μ be the Hankel matrix H_μ={ μ_{n,k} }_{n,k} with entries μ_{n,k} =μ_{n+k} where μ_n denotes the moment of order n of μ. This matrix induces formally an operator on the space of all analytic functions in the unit disc D. When μ is the Lebesgue measure on [0,1) the operator H_μ is the classical Hilbert operator H which is bounded on H^p if 1<p< ∞, but not on H^1. J. Cima has recently proved that H is an injective bounded operator from H^1 into the space C of Cauchy transforms of measures on the unit circle. The operator H_μ is known to be well defined on H^1 if and only if μ is a Carleson measure and in such a case we have that H_μ(H^1) is contained in C. Furthermore, it is bounded from H^1 into itself if and only if μ is a 1-logarithmic 1-Carleson measure. In this paper we prove that when μ is a 1-logarithmic 1-Carleson measure then H_μ actually maps H^1 into the space of Dirichlet type D^1_0. We discuss also the range of H_μ on H^1 when μ is an α-logarithmic 1-Carleson measure (0<α<1). We study also the action of the operators H_μ on Bergman spaces and on Dirichlet spaces.es_ES
dc.description.sponsorship- Proyecto del Ministerio de Economía y Competitividad MTM2014-52865-P. - Proyecto de la Junta de Andalucía FQM-210. - Ayuda FPU del Ministerio de Educación, Cultura y Deporte FPU2013/01478.es_ES
dc.identifier.citationGirela, D., Merchán, N. Hankel matrices acting on the Hardy space and on Dirichlet spaces. Rev Mat Complut 32, 799–822 (2019). https://doi.org/10.1007/s13163-018-0288-zes_ES
dc.identifier.doi10.1007/s13163-018-0288-z
dc.identifier.urihttps://hdl.handle.net/10630/29170
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectHankel, Operadores dees_ES
dc.subjectHilbert, Operadores en espacio dees_ES
dc.subjectÁlgebra lineales_ES
dc.subject.otherHankel matrixes_ES
dc.subject.otherGeneralized Hilbert operatores_ES
dc.subject.otherHardy spaceses_ES
dc.subject.otherCauchy transformses_ES
dc.subject.otherWeighted Bergman spaceses_ES
dc.subject.otherDirichlet spaceses_ES
dc.subject.otherDualityes_ES
dc.titleHankel matrices acting on the Hardy space H1 and on Dirichlet spaces.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication20358c49-a3a2-47fd-892b-c73fdbc2870d
relation.isAuthorOfPublication702b63a6-e9ef-456c-abc1-e14bf3da3166
relation.isAuthorOfPublication.latestForDiscovery20358c49-a3a2-47fd-892b-c73fdbc2870d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GM3-Hmu.Imu-Hardy-Dir-REV-October-24-2018.pdf
Size:
402.26 KB
Format:
Adobe Portable Document Format
Description:
Versión aceptada antes de ser publicada
Download

Description: Versión aceptada antes de ser publicada

Collections