Initialization of 3D Pose Graph Optimization using Lagrangian duality
| dc.centro | E.T.S.I. Informática | es_ES |
| dc.contributor.author | Briales Garcia, Jesus | |
| dc.contributor.author | González-Jiménez, Antonio Javier | |
| dc.date.accessioned | 2017-09-12T11:29:03Z | |
| dc.date.available | 2017-09-12T11:29:03Z | |
| dc.date.issued | 2017-05 | |
| dc.departamento | Ingeniería de Sistemas y Automática | |
| dc.description.abstract | Pose Graph Optimization (PGO) is the de facto choice to solve the trajectory of an agent in Simultaneous Localization and Mapping (SLAM). The Maximum Likelihood Estimation (MLE) for PGO is a non-convex problem for which no known technique is able to guarantee a globally optimal solution under general conditions. In recent years, Lagrangian duality has proved suitable to provide good, frequently tight relaxations of the hard PGO problem through convex Semidefinite Programming (SDP). In this work, we build from the state-of-the-art Lagrangian relaxation [1] and contribute a complete recovery procedure that, given the (tractable) optimal solution of the relaxation, provides either the optimal MLE solution if the relaxation is tight, or a remarkably good feasible guess if the relaxation is non-tight, which occurs in specially challenging PGO problems (very noisy observations, low graph connectivity, etc.). In the latter case, when used for initialization of local iterative methods, our approach outperforms other state-ofthe- art approaches converging to better solutions. We support our claims with extensive experiments. | es_ES |
| dc.description.sponsorship | University of Malaga travel grant, the Spanish grant program FPU14/06098 and the project PROMOVE (DPI2014-55826-R), funded by the Spanish Government and the "European Regional Development Fund". Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. | es_ES |
| dc.identifier.citation | Int. Conf. on Robotics and Automation (ICRA). | es_ES |
| dc.identifier.orcid | http://orcid.org/0000-0003-3845-3497 | es_ES |
| dc.identifier.uri | http://hdl.handle.net/10630/14454 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | IEEE | es_ES |
| dc.relation.eventdate | May, 2017 | es_ES |
| dc.relation.eventplace | Singapore | es_ES |
| dc.relation.eventtitle | Int. Conf. on Robotics and Automation (ICRA) | es_ES |
| dc.rights | by-nc-nd | |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Programación (Matemáticas) | es_ES |
| dc.subject.other | Pose Graph | es_ES |
| dc.subject.other | SLAM | es_ES |
| dc.subject.other | Lagrangian duality | es_ES |
| dc.subject.other | Semidefinite Programming | es_ES |
| dc.title | Initialization of 3D Pose Graph Optimization using Lagrangian duality | es_ES |
| dc.type | journal article | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 3000ee8d-0551-4a25-b568-d5c0a93117b2 | |
| relation.isAuthorOfPublication.latestForDiscovery | 3000ee8d-0551-4a25-b568-d5c0a93117b2 |
Files
Original bundle
1 - 1 of 1

