Detecting Feature Influences to Quality Attributes in Large and Partially Measured Spaces using Smart Sampling and Dynamic Learning

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorMuñoz-Guerra, Daniel Jesús
dc.contributor.authorPinto-Alarcón, Mónica
dc.contributor.authorFuentes-Fernández, Lidia
dc.date.accessioned2023-06-21T06:40:50Z
dc.date.available2023-06-21T06:40:50Z
dc.date.created2023-05-07
dc.date.issued2023
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.descriptionPublicación Journal First siendo el original: Munoz, D. J., Pinto, M., & Fuentes, L. (2023). Detecting feature influences to quality attributes in large and partially measured spaces using smart sampling and dynamic learning. Knowledge-Based Systems, 270, 110558.es_ES
dc.description.abstractEmergent application domains (e.g., Edge Computing/Cloud /B5G systems) are complex to be built manually. They are characterised by high variability and are modelled by large \textit{Variability Models} (VMs), leading to large configuration spaces. Due to the high number of variants present in such systems, it is challenging to find the best-ranked product regarding particular Quality Attributes (QAs) in a short time. Moreover, measuring QAs sometimes is not trivial, requiring a lot of time and resources, as is the case of the energy footprint of software systems -- the focus of this paper. Hence, we need a mechanism to analyse how features and their interactions influence energy footprint, but without measuring all configurations. While practical, sampling and predictive techniques base their accuracy on uniform spaces or some initial domain knowledge, which are not always possible to achieve. Indeed, analysing the energy footprint of products in large configuration spaces raises specific requirements that we explore in this work. This paper presents SAVRUS (Smart Analyser of Variability Requirements in Unknown Spaces), an approach for sampling and dynamic statistical learning without relying on initial domain knowledge of large and partially QA-measured spaces. SAVRUS reports the degree to which features and pairwise interactions influence a particular QA, like energy efficiency. We validate and evaluate SAVRUS with a selection of likewise systems, which define large searching spaces containing scattered measurements.es_ES
dc.description.sponsorshipTrabajo financiado por el programa de I+D H2020 de la UE bajo el acuerdo DAEMON 101017109, por los proyectos también co-financiados por fondos FEDER \emph{IRIS} PID2021-122812OB-I00, y \emph{LEIA} UMA18-FEDERIA-157, y la ayuda PRE2019-087496 del Ministerio de Ciencia e Innovación. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/27043
dc.language.isoenges_ES
dc.relation.eventdate12-14 Septiembre 2023es_ES
dc.relation.eventplaceCiudad Reales_ES
dc.relation.eventtitleJornadas de Ingeniería del Software y Bases de Datos (JISBD)es_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectIngeniería del softwarees_ES
dc.subjectEnergía-Mediciónes_ES
dc.subject.otherConfigurable Systemes_ES
dc.subject.otherSamplinges_ES
dc.subject.otherLearninges_ES
dc.subject.otherQuality Attributeses_ES
dc.subject.otherInfluencees_ES
dc.subject.otherInteracting Featureses_ES
dc.titleDetecting Feature Influences to Quality Attributes in Large and Partially Measured Spaces using Smart Sampling and Dynamic Learninges_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication839f00c1-d583-4eeb-bb1e-d529b1df6967
relation.isAuthorOfPublication431c7076-c749-483c-8fd6-b9c18bf33a13
relation.isAuthorOfPublication.latestForDiscovery839f00c1-d583-4eeb-bb1e-d529b1df6967

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Artículo_JISBD.pdf
Size:
154.1 KB
Format:
Adobe Portable Document Format
Description:
Publicación Journal First
Download

Description: Publicación Journal First