Upper-limb kinematic parameter estimation and localization using a compliant robotic manipulator.

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorRuiz-Ruiz, Francisco J.
dc.contributor.authorGandarias Palacios, Juan Manuel
dc.contributor.authorPastor-Martín, Francisco
dc.contributor.authorGómez-de-Gabriel, Jesús Manuel
dc.date.accessioned2024-09-30T11:40:54Z
dc.date.available2024-09-30T11:40:54Z
dc.date.issued2021-03-18
dc.departamentoIngeniería de Sistemas y Automática
dc.description.abstractAssistive and rehabilitation robotics have gained momentum over the past decade and are expected to progress significantly in the coming years. Although relevant and promising research advances have contributed to these fields, challenges regarding intentional physical contact with humans remain. Despite being a fundamental component of assistive and rehabilitation tasks, there is an evident lack of work related to robotic manipulators that intentionally manipulate human body parts. Moreover, existing solutions involving end-effector robots are not based on accurate knowledge of human limb dimensions and their current configuration. This knowledge, which is essential for safe human–limb manipulation, depends on the grasping location and human kinematic parameters. This paper addresses the upper-limb manipulation challenge and proposes a pose estimation method using a compliant robotic manipulator. To the best of our knowledge, this is the first attempt to address this challenge. A kinesthetic-based approach enables estimation of the kinematic parameters of the human arm without integrating external sensors. The estimation method relies only on proprioceptive data obtained from a collaborative robot with a Cartesian impedance-based controller to follow a compliant trajectory that depends on human arm kinodynamics. The human arm model is a 2-degree of freedom (DoF) kinematic chain. Thus, prior knowledge of the arm’s behavior and an estimation method enables estimation of the kinematic parameters. Two estimation methods are implemented and compared: i) Hough transform (HT); ii) least squares (LS). Furthermore, a resizable, sensorized dummy arm is designed for experimental validation of the proposed approach. Outcomes from six experiments with different arm lengths demonstrate the repeatability and effectiveness of the proposed methodology, which can be used in several rehabilitation robotic applications.es_ES
dc.identifier.citationF. J. Ruiz-Ruiz, J. M. Gandarias, F. Pastor and J. M. Gómez-De-Gabriel, "Upper-Limb Kinematic Parameter Estimation and Localization Using a Compliant Robotic Manipulator," in IEEE Access, vol. 9, pp. 48313-48324, 2021, doi: 10.1109/ACCESS.2021.3067108es_ES
dc.identifier.doi10.1109/ACCESS.2021.3067108
dc.identifier.urihttps://hdl.handle.net/10630/34038
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectDetectoreses_ES
dc.subjectRobóticaes_ES
dc.subjectCinemáticaes_ES
dc.subject.otherRoboticses_ES
dc.subject.otherSensorses_ES
dc.subject.otherKinematicses_ES
dc.subject.otherEstimationes_ES
dc.titleUpper-limb kinematic parameter estimation and localization using a compliant robotic manipulator.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicatione12aaab5-66be-4d72-bd9c-36dc69c1f4cf
relation.isAuthorOfPublication.latestForDiscoverye12aaab5-66be-4d72-bd9c-36dc69c1f4cf

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
J_2021_IEEEAccess_Upper.pdf
Size:
11.22 MB
Format:
Adobe Portable Document Format
Description:
artículo
Download

Description: artículo

Collections