Reinforcement and Curriculum Learning for Off-Road Navigation of an UGV with a 3D LiDAR
| dc.centro | Escuela de Ingenierías Industriales | es_ES |
| dc.contributor.author | Sánchez-Montero, Manuel | |
| dc.contributor.author | Morales-Rodríguez, Jesús | |
| dc.contributor.author | Martínez-Rodríguez, Jorge Luis | |
| dc.date.accessioned | 2023-06-08T06:24:10Z | |
| dc.date.available | 2023-06-08T06:24:10Z | |
| dc.date.created | 2023-06-07 | |
| dc.date.issued | 2023-03-18 | |
| dc.departamento | Ingeniería de Sistemas y Automática | |
| dc.description.abstract | This paper presents the use of deep Reinforcement Learning (RL) for autonomous navigation of an Unmanned Ground Vehicle (UGV) with an onboard three-dimensional (3D) Light Detection and Ranging (LiDAR) sensor in off-road environments. For training, both the robotic simulator Gazebo and the Curriculum Learning paradigm are applied. Furthermore, an Actor–Critic Neural Network (NN) scheme is chosen with a suitable state and a custom reward function. To employ the 3D LiDAR data as part of the input state of the NNs, a virtual two-dimensional (2D) traversability scanner is developed. The resulting Actor NN has been successfully tested in both real and simulated experiments and favorably compared with a previous reactive navigation approach on the same UGV. | es_ES |
| dc.description.sponsorship | Partial funding for open access charge: Universidad de Málaga | es_ES |
| dc.identifier.citation | Sánchez M, Morales J, Martínez JL. Reinforcement and Curriculum Learning for Off-Road Navigation of an UGV with a 3D LiDAR. Sensors. 2023; 23(6):3239. https://doi.org/10.3390/s23063239 | es_ES |
| dc.identifier.doi | 10.3390/s23063239 | |
| dc.identifier.uri | https://hdl.handle.net/10630/26864 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | MDPI | es_ES |
| dc.rights | Atribución 4.0 Internacional | * |
| dc.rights.accessRights | open access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject | Robótica | es_ES |
| dc.subject | Robots autónomos | es_ES |
| dc.subject | Aprendizaje automático (Inteligencia artificial) | es_ES |
| dc.subject.other | 3D LiDAR | es_ES |
| dc.subject.other | Reinforcement learning | es_ES |
| dc.subject.other | Off-road navigation | es_ES |
| dc.subject.other | Curriculum learning | es_ES |
| dc.subject.other | Unmanned ground vehicles | es_ES |
| dc.subject.other | Traversability | es_ES |
| dc.subject.other | Robotic simulations | es_ES |
| dc.title | Reinforcement and Curriculum Learning for Off-Road Navigation of an UGV with a 3D LiDAR | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | VoR | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 14fa0e60-c422-48ee-8093-600fb95e788c | |
| relation.isAuthorOfPublication | f7f187bf-2543-410f-8e9e-d920911a5fd1 | |
| relation.isAuthorOfPublication.latestForDiscovery | 14fa0e60-c422-48ee-8093-600fb95e788c |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- sensors-23-03239.pdf
- Size:
- 22.19 MB
- Format:
- Adobe Portable Document Format
- Description:

