Reinforcement and Curriculum Learning for Off-Road Navigation of an UGV with a 3D LiDAR

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorSánchez-Montero, Manuel
dc.contributor.authorMorales-Rodríguez, Jesús
dc.contributor.authorMartínez-Rodríguez, Jorge Luis
dc.date.accessioned2023-06-08T06:24:10Z
dc.date.available2023-06-08T06:24:10Z
dc.date.created2023-06-07
dc.date.issued2023-03-18
dc.departamentoIngeniería de Sistemas y Automática
dc.description.abstractThis paper presents the use of deep Reinforcement Learning (RL) for autonomous navigation of an Unmanned Ground Vehicle (UGV) with an onboard three-dimensional (3D) Light Detection and Ranging (LiDAR) sensor in off-road environments. For training, both the robotic simulator Gazebo and the Curriculum Learning paradigm are applied. Furthermore, an Actor–Critic Neural Network (NN) scheme is chosen with a suitable state and a custom reward function. To employ the 3D LiDAR data as part of the input state of the NNs, a virtual two-dimensional (2D) traversability scanner is developed. The resulting Actor NN has been successfully tested in both real and simulated experiments and favorably compared with a previous reactive navigation approach on the same UGV.es_ES
dc.description.sponsorshipPartial funding for open access charge: Universidad de Málagaes_ES
dc.identifier.citationSánchez M, Morales J, Martínez JL. Reinforcement and Curriculum Learning for Off-Road Navigation of an UGV with a 3D LiDAR. Sensors. 2023; 23(6):3239. https://doi.org/10.3390/s23063239es_ES
dc.identifier.doi10.3390/s23063239
dc.identifier.urihttps://hdl.handle.net/10630/26864
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectRobóticaes_ES
dc.subjectRobots autónomoses_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subject.other3D LiDARes_ES
dc.subject.otherReinforcement learninges_ES
dc.subject.otherOff-road navigationes_ES
dc.subject.otherCurriculum learninges_ES
dc.subject.otherUnmanned ground vehicleses_ES
dc.subject.otherTraversabilityes_ES
dc.subject.otherRobotic simulationses_ES
dc.titleReinforcement and Curriculum Learning for Off-Road Navigation of an UGV with a 3D LiDARes_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication14fa0e60-c422-48ee-8093-600fb95e788c
relation.isAuthorOfPublicationf7f187bf-2543-410f-8e9e-d920911a5fd1
relation.isAuthorOfPublication.latestForDiscovery14fa0e60-c422-48ee-8093-600fb95e788c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors-23-03239.pdf
Size:
22.19 MB
Format:
Adobe Portable Document Format
Description:

Collections