Small-Scale Urban Object Anomaly Detection Using Convolutional Neural Networks with Probability Estimation.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorGarcía Aguilar, Iván
dc.contributor.authorLuque-Baena, Rafael Marcos
dc.contributor.authorDomínguez-Merino, Enrique
dc.contributor.authorLópez-Rubio, Ezequiel
dc.date.accessioned2024-05-24T12:41:52Z
dc.date.available2024-05-24T12:41:52Z
dc.date.created2024
dc.date.issued2023-08-15
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractAnomaly detection in sequences is a complex problem in security and surveillance. With the exponential growth of surveillance cameras in urban roads, automating them to analyze the data and automatically identify anomalous events efficiently is essential. This paper presents a methodology to detect anomalous events in urban sequences using pre-trained convolutional neural networks (CNN) and super-resolution (SR) models. The proposal is composed of two parts. In the offline stage, the pre-trained CNN model evaluated a large dataset of urban sequences to detect and establish the common locations of the elements of interest. Analyzing the offline sequences, a density matrix is calculated to learn the spatial patterns and identify the most frequent locations of these elements. Based on probabilities previously calculated from the offline analysis, the pre-trained CNN, now in an online stage, assesses the probability of anomalies appearing in the real-time sequence using the density matrix. Experimental results demonstrate the effectiveness of the presented approach in detecting several anomalies, such as unusual pedestrian routes. This research contributes to urban surveillance by providing a practical and reliable method to improve public safety in urban environments. The proposed methodology can assist city management authorities in proactively detecting anomalies, thus enabling timely reaction and improving urban safety.es_ES
dc.description.sponsorshipPartial funding for open access charge: Universidad de Málaga.es_ES
dc.identifier.citationGarcía-Aguilar, I., Luque-Baena, R. M., Domínguez, E., & López-Rubio, E. (2023). Small-Scale Urban Object Anomaly Detection Using Convolutional Neural Networks with Probability Estimation. Sensors, 23(16), 7185. https://doi.org/10.3390/s23167185es_ES
dc.identifier.doi10.3390/s23167185
dc.identifier.urihttps://hdl.handle.net/10630/31387
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectRedes neuronales (Informática)es_ES
dc.subject.otherConvolutional neural networkes_ES
dc.subject.otherSuper-resolutiones_ES
dc.subject.otherAnomaly detectiones_ES
dc.titleSmall-Scale Urban Object Anomaly Detection Using Convolutional Neural Networks with Probability Estimation.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication15881531-a431-477b-80d6-532058d8377c
relation.isAuthorOfPublicationee99eb5a-8e94-462f-9bea-2da1832bedcf
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublication.latestForDiscovery15881531-a431-477b-80d6-532058d8377c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors-23-07185-v2(2).pdf
Size:
54.9 MB
Format:
Adobe Portable Document Format
Description:

Collections