Control and soft sensing strategies for a wastewater treatment plant using a neuro-genetic approach.

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorFernández-de-Cañete-Rodríguez, Francisco Javier
dc.contributor.authorDel Saz-Orozco, Pablo
dc.contributor.authorGómez-de-Gabriel, Jesús Manuel
dc.contributor.authorBaratti, Roberto
dc.contributor.authorRuano, Antonio
dc.contributor.authorRivas-Blanco, Irene
dc.date.accessioned2024-02-05T08:20:20Z
dc.date.available2024-02-05T08:20:20Z
dc.date.created2021
dc.date.issued2020-10-28
dc.departamentoIngeniería de Sistemas y Automática
dc.description.abstractDuring the last years, machine learning-based control and optimization systems are playing an important role in the operation of wastewater treatment plants in terms of reduced operational costs and improved effluent quality. In this paper, a machine learning-based control strategy is proposed for optimizing both the consumption and the number of regulation violations of a biological wastewater treatment plant. The methodology proposed in this study uses neural networks as a soft-sensor for on-line prediction of the effluent quality and as an identification model of the plant dynamics, all under a neuro-genetic optimum model-based control approach. The complete scheme was tested on a simulation model of the activated sludge process of a large-scale municipal wastewater treatment plant running under the GPS-X simulation frame and validated with operational gathered data, showing optimal control performance by minimizing operational costs while satisfying the effluent requirements, thus reducing the investment in expensive sensor devices.es_ES
dc.identifier.citationFernandez de Canete, J., del Saz-Orozco, P., Gómez-de-Gabriel, J., Baratti, R., Ruano, A., & Rivas-Blanco, I. (2021). Control and soft sensing strategies for a wastewater treatment plant using a neuro-genetic approach. Computers & Chemical Engineering, 144, 107146.es_ES
dc.identifier.doi10.1016/j.compchemeng.2020.107146
dc.identifier.urihttps://hdl.handle.net/10630/29753
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectRedes neuronales (Informática)es_ES
dc.subjectAguas residuales - Purificaciónes_ES
dc.subjectAlgoritmos genéticoses_ES
dc.subject.otherNeural Networkses_ES
dc.subject.otherGenetic Algorithmses_ES
dc.subject.otherSoft-sensinges_ES
dc.subject.otherOptimized Controles_ES
dc.subject.otherActivated Sludge Processes_ES
dc.titleControl and soft sensing strategies for a wastewater treatment plant using a neuro-genetic approach.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication16c69873-3921-4e6e-905b-a16da698a65c
relation.isAuthorOfPublicatione12aaab5-66be-4d72-bd9c-36dc69c1f4cf
relation.isAuthorOfPublication02814d70-2bb0-4b1f-956c-3c05c00dcd8d
relation.isAuthorOfPublication.latestForDiscovery16c69873-3921-4e6e-905b-a16da698a65c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CACE_2020_285.pdf
Size:
3.07 MB
Format:
Adobe Portable Document Format
Description:

Collections