Control and soft sensing strategies for a wastewater treatment plant using a neuro-genetic approach.
| dc.centro | Escuela de Ingenierías Industriales | es_ES |
| dc.contributor.author | Fernández-de-Cañete-Rodríguez, Francisco Javier | |
| dc.contributor.author | Del Saz-Orozco, Pablo | |
| dc.contributor.author | Gómez-de-Gabriel, Jesús Manuel | |
| dc.contributor.author | Baratti, Roberto | |
| dc.contributor.author | Ruano, Antonio | |
| dc.contributor.author | Rivas-Blanco, Irene | |
| dc.date.accessioned | 2024-02-05T08:20:20Z | |
| dc.date.available | 2024-02-05T08:20:20Z | |
| dc.date.created | 2021 | |
| dc.date.issued | 2020-10-28 | |
| dc.departamento | Ingeniería de Sistemas y Automática | |
| dc.description.abstract | During the last years, machine learning-based control and optimization systems are playing an important role in the operation of wastewater treatment plants in terms of reduced operational costs and improved effluent quality. In this paper, a machine learning-based control strategy is proposed for optimizing both the consumption and the number of regulation violations of a biological wastewater treatment plant. The methodology proposed in this study uses neural networks as a soft-sensor for on-line prediction of the effluent quality and as an identification model of the plant dynamics, all under a neuro-genetic optimum model-based control approach. The complete scheme was tested on a simulation model of the activated sludge process of a large-scale municipal wastewater treatment plant running under the GPS-X simulation frame and validated with operational gathered data, showing optimal control performance by minimizing operational costs while satisfying the effluent requirements, thus reducing the investment in expensive sensor devices. | es_ES |
| dc.identifier.citation | Fernandez de Canete, J., del Saz-Orozco, P., Gómez-de-Gabriel, J., Baratti, R., Ruano, A., & Rivas-Blanco, I. (2021). Control and soft sensing strategies for a wastewater treatment plant using a neuro-genetic approach. Computers & Chemical Engineering, 144, 107146. | es_ES |
| dc.identifier.doi | 10.1016/j.compchemeng.2020.107146 | |
| dc.identifier.uri | https://hdl.handle.net/10630/29753 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Elsevier | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Redes neuronales (Informática) | es_ES |
| dc.subject | Aguas residuales - Purificación | es_ES |
| dc.subject | Algoritmos genéticos | es_ES |
| dc.subject.other | Neural Networks | es_ES |
| dc.subject.other | Genetic Algorithms | es_ES |
| dc.subject.other | Soft-sensing | es_ES |
| dc.subject.other | Optimized Control | es_ES |
| dc.subject.other | Activated Sludge Process | es_ES |
| dc.title | Control and soft sensing strategies for a wastewater treatment plant using a neuro-genetic approach. | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | SMUR | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 16c69873-3921-4e6e-905b-a16da698a65c | |
| relation.isAuthorOfPublication | e12aaab5-66be-4d72-bd9c-36dc69c1f4cf | |
| relation.isAuthorOfPublication | 02814d70-2bb0-4b1f-956c-3c05c00dcd8d | |
| relation.isAuthorOfPublication.latestForDiscovery | 16c69873-3921-4e6e-905b-a16da698a65c |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- CACE_2020_285.pdf
- Size:
- 3.07 MB
- Format:
- Adobe Portable Document Format
- Description:

