Defining Categorical Reasoning of Numerical Feature Models with Feature-Wise and Variant-Wise Quality Attributes

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorMuñoz-Guerra, Daniel Jesús
dc.contributor.authorPinto-Alarcón, Mónica
dc.contributor.authorGurov, Dilian
dc.contributor.authorFuentes-Fernández, Lidia
dc.date.accessioned2022-10-07T11:57:57Z
dc.date.available2022-10-07T11:57:57Z
dc.date.created2022
dc.date.issued2022
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.description.abstractAutomatic analysis of variability is an important stage of Software Product Line (SPL) engineering. Incorporating quality information into this stage poses a significant challenge. However, quality-aware automated analysis tools are rare, mainly because in existing solutions variability and quality information are not unified under the same model. In this paper, we make use of the Quality Variability Model (QVM), based on Category Theory (CT), to redefine reasoning operations. We start defining and composing the six most commonoperations in SPL, but now as quality-based queries, which tend to be unavailable in other approaches. Consequently, QVM supports interactions between variant-wise and feature-wise quality attributes. As a proof of concept,we present, implement and execute the operations as lambda reasoning for CQL IDE – the state-of-theart CT tool.es_ES
dc.description.sponsorshipMunoz, Pinto and Fuentes work is supported by the European Union’s H2020 research and innovation programme under grant agreement DAEMON 101017109, by the projects co-financed by FEDER funds LEIA UMA18-FEDERJA-15, MEDEA RTI2018-099213-B-I00 and Rhea P18-FR-1081 and the PRE2019-087496 grant from the Ministerio de Ciencia e Innovación.es_ES
dc.identifier.citationDaniel-Jesus Munoz, Mónica Pinto, Dilian Gurov, and Lidia Fuentes. 2022. Defining categorical reasoning of numerical feature models with feature-wise and variant-wise quality attributes. In Proceedings of the 26th ACM International Systems and Software Product Line Conference - Volume B (SPLC '22). Association for Computing Machinery, New York, NY, USA, 132–139. https://doi.org/10.1145/3503229.3547057es_ES
dc.identifier.doihttps://doi.org/10.1145/3503229.3547057
dc.identifier.urihttps://hdl.handle.net/10630/25193
dc.language.isoenges_ES
dc.publisherACMes_ES
dc.relation.ispartofseries9781450392068;
dc.rights.accessRightsopen accesses_ES
dc.subjectSoporte lógicoes_ES
dc.subject.othercategory theoryes_ES
dc.subject.otherquality attributees_ES
dc.subject.otherextended feature modeles_ES
dc.subject.otherautomated reasoninges_ES
dc.subject.othernumerical featureses_ES
dc.titleDefining Categorical Reasoning of Numerical Feature Models with Feature-Wise and Variant-Wise Quality Attributeses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication839f00c1-d583-4eeb-bb1e-d529b1df6967
relation.isAuthorOfPublication431c7076-c749-483c-8fd6-b9c18bf33a13
relation.isAuthorOfPublication.latestForDiscovery839f00c1-d583-4eeb-bb1e-d529b1df6967

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Artículo.pdf
Size:
971.36 KB
Format:
Adobe Portable Document Format
Description:

Collections