Panoramic Background Modeling for PTZ Cameras with Competitive Learning Neural Networks

Research Projects

Organizational Units

Journal Issue

Abstract

The construction of a model of the background of a scene still remains as a challenging task in video surveillance systems, in particular for moving cameras. This work presents a novel approach for constructing a panoramic background model based on competitive learning neural networks and a subsequent piecewise linear interpolation by Delaunay triangulation. The approach can handle arbitrary camera directions and zooms for a Pan-Tilt-Zoom (PTZ) camera-based surveillance system. After testing the proposed approach on several indoor sequences, the results demonstrate that the proposed method is effective and suitable to use for real-time video surveillance applications.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by