Multimodal object recognition module for social robots

dc.contributor.authorCruces, Alejandro
dc.contributor.authorTudela, Alberto
dc.contributor.authorRomero-Garces, Adrian
dc.contributor.authorBandera-Rubio, Juan Pedro
dc.date.accessioned2022-11-29T10:54:08Z
dc.date.available2022-11-29T10:54:08Z
dc.date.created2022
dc.date.issued2022
dc.departamentoTecnología Electrónica
dc.description.abstractSensor fusion techniques are able to increase robustness and accuracy over data provided by isolated sensors. Fusion can be performed at a low level, creating shared data representations from multiple sensory inputs, or at a high level, checking consistency and similarity of objects provided by different sources. These last techniques are more prone to discard perceived objects due to overlapping or partial occlusions, but they are usually simpler, and more scalable. Hence, they are more adequate when data gathering is the key requirement, while safety is not compromised, computational resources may be limited and it is important to easily incorporate new sensors (e.g. monitorization in smart environments or object recognition for social robots). This paper proposes a novel perception integrator module that uses low complexity algorithms to implement fusion, tracking and forgetting mechanisms. Its main characteristics are simplicity, adaptability and scalability. The system has been integrated in a social robot and employed to achieve multimodal object and person recognition. Experimental results show the adequacy of the solution in terms of detection and recognition rates, integrability into the constrained resources of a robot, and adaptability to different sensors, detection priorities and scenarios.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.citationCruces, A., Tudela, A., Romero-Garcés, A., Bandera, J.P. (2023). Multimodal Object Recognition Module for Social Robots. In: Tardioli, D., Matellán, V., Heredia, G., Silva, M.F., Marques, L. (eds) ROBOT2022: Fifth Iberian Robotics Conference. ROBOT 2022. Lecture Notes in Networks and Systems, vol 590. Springer, Cham. https://doi.org/10.1007/978-3-031-21062-4_40es_ES
dc.identifier.urihttps://hdl.handle.net/10630/25530
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.eventdateNoviembre 2022es_ES
dc.relation.eventplaceZaragozaes_ES
dc.relation.eventtitleROBOT2022: Fifth Iberian Robotics Conferencees_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectRobóticaes_ES
dc.subjectDetectoreses_ES
dc.subject.otherSocial roboticses_ES
dc.subject.otherSensor fusiones_ES
dc.titleMultimodal object recognition module for social robotses_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationd6451673-45f2-423a-8ea9-3eb718117284
relation.isAuthorOfPublication.latestForDiscoveryd6451673-45f2-423a-8ea9-3eb718117284

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2022_WAF_Multimodal object recognition module for social robots.pdf
Size:
2.82 MB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal