Decompositions of endomorphisms into a sum of roots of the unity and nilpotent endomorphisms of fixed nilpotence.

Loading...
Thumbnail Image

Files

DGG2023.pdf (387.81 KB)

Description: Artículo principal"

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

For n ≥ 2 and fixed k ≥ 1, we study when an endomorphism f of Fn, where F is an arbitrary field, can be decomposed as t + m where t is a root of the unity endomorphism and m is a nilpotent endomorphism with mk = 0. For fields of prime characteristic, we show that this decomposition holds as soon as the characteristic polynomial of f is algebraic over its base field and the rank of f is at least n k , and we present several examples that show that the decomposition does not hold in general. Furthermore, we completely solve this decomposition problem for k = 2 and nilpotent endomorphisms over arbitrary fields (even over division rings). This somewhat continues our recent publications in Linear Multilinear Algebra (2022) and Int.

Description

Bibliographic citation

Peter Danchev, Esther García, Miguel Gómez Lozano, Decompositions of endomorphisms into a sum of roots of the unity and nilpotent endomorphisms of fixed nilpotence, Linear Algebra and its Applications, Volume 676, 2023, Pages 44-55, ISSN 0024-3795, https://doi.org/10.1016/j.laa.2023.07.005

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional