Padé numerical schemes for the sine–Gordon equation

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorMartín-Vergara, Francisca
dc.contributor.authorVillatoro-Machuca, Francisco Román
dc.contributor.authorRus Mansilla, Francisco
dc.date.accessioned2023-05-16T09:15:23Z
dc.date.available2023-05-16T09:15:23Z
dc.date.issued2019
dc.departamentoLenguajes y Ciencias de la Computación
dc.descriptionVersión preprint ya que por motivos de derechos de propiedad intelectual no es posible subir la versión publicada del artículo.es_ES
dc.description.abstractThe sine-Gordon equation turn up in several problems in science and engineering. Although it is integrable, in practical applications, its numerical solution is powerful and versatile. Four novel implicit finite difference methods based on ( q , s ) Padé approximations with ( q + s ) th order in space have been developed and analyzed for this equation; all share the same treatment for the nonlinearity and integration in time. Concretely, (0,4), (2,2), (2,4), and (4,4) Padé methods; additionally, the energy conserving, Strauss–Vázquez scheme has been considered in a (0,2) Padé implementation. These methods have been compared among them for both the kink–antikink and breather solutions in terms of global error, computational cost and energy conservation. The (0,4) and (2,4) Padé methods are the most cost-effective ones for small and large global error, respectively. Our results indicate that spatial order of accuracy is more relevant to effectiveness of a method than energy conservation even in very long time integrations.es_ES
dc.description.sponsorshipProjects EphemeCH (TIN2014-56494-C4-1-P) and DeepBIO (TIN2017-85727-C4-1-P) of the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia del Ministerio de Ciencia e Innovación of Spain.es_ES
dc.identifier.citationF. Martin-Vergara, F. Rus, F.R. Villatoro, ”Padé numerical schemes for the sine–Gordon equation,” Applied Mathematics and Computation 358: 232–243 (2019). ISSN 0096-3003, doi:10.1016/j.amc.2019.04.042.es_ES
dc.identifier.doi10.1016/j.amc.2019.04.042
dc.identifier.urihttps://hdl.handle.net/10630/26569
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectOndas electromagnéticas -- Propagaciónes_ES
dc.subjectSolitoneses_ES
dc.subjectMétodos numéricoses_ES
dc.subject.otherPadé numerical methodses_ES
dc.subject.otherImplicit time integrationes_ES
dc.subject.otherSolitonses_ES
dc.subject.otherKink-antikinkes_ES
dc.subject.otherBreatheres_ES
dc.subject.otherSine-Gordon equationes_ES
dc.titlePadé numerical schemes for the sine–Gordon equationes_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication656a84ac-620c-4b0c-90d6-3cfa044050df
relation.isAuthorOfPublication.latestForDiscovery656a84ac-620c-4b0c-90d6-3cfa044050df

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Art1_PadeSGeq.pdf
Size:
1.97 MB
Format:
Adobe Portable Document Format
Description:

Collections