Adapting LLMs for Satellite Communications: Methodology, Challenges, and Impact.
| dc.centro | E.T.S.I. Informática | es_ES |
| dc.contributor.author | Mozo-Quesada, Alejandro Jesús | |
| dc.contributor.author | Gálvez-Rojas, Sergio | |
| dc.contributor.author | Christou, Ioannis | |
| dc.contributor.author | Vogiatzis, Dimitrios | |
| dc.contributor.author | Navarro, Tomás | |
| dc.contributor.author | López-Valverde, Francisco | |
| dc.date.accessioned | 2025-09-04T08:59:30Z | |
| dc.date.available | 2025-09-04T08:59:30Z | |
| dc.date.issued | 2025-09-02 | |
| dc.departamento | Lenguajes y Ciencias de la Computación | es_ES |
| dc.description.abstract | The application of large language models (LLMs) to specialized fields, such as Satellite Communications (SatCom), presents unique challenges due to the extensive and cutting-edge knowledge required. SatCom encompasses a wide range of technical details, protocols, and operational guidelines that must be addressed to produce effective and accurate models for practical use. This paper presents a fine-tuning approach for adapting 7-billion-parameter instructed LLMs (Llama-3v and Mistral) to SatCom, using a proprietary corpus sourced from the European Space Agency (ESA) consisting of domain-specific PDF documents. The confidential nature of this corpus imposes constraints on both model training and evaluation, demanding a sensible text extraction pipeline capable of handling complex structures, such as tables, to preserve critical information. Our fine-tuning methodology employs a carefully configured process, followed by an automatic evaluation framework using a curated Q&A set tailored to SatCom. Models were created in both non-quantified and 8-bit quantized formats, ensuring feasibility for desktop-level inference. The fine-tuned models demonstrated a 6,6% improvement over the baseline LLM, as well as significant gains when compared to retrieval-augmented generation (RAG) methods. These results indicate a promising advancement in the development of LLMs for domain-specific applications within the SatCom field. | es_ES |
| dc.description.sponsorship | Agencia Espacial Europea | es_ES |
| dc.identifier.citation | A. Mozo, S. Gálvez, L. T. Christou, D. Vogiatzis, T. Navarro and F. L. Valverde, "Adapting LLMs for Satellite Communications: Methodology, Challenges, and Impact," in IEEE Access, doi: 10.1109/ACCESS.2025.3605022. | es_ES |
| dc.identifier.doi | 10.1109/ACCESS.2025.3605022 | |
| dc.identifier.uri | https://hdl.handle.net/10630/39759 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | IEEE | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Inteligencia artificial | es_ES |
| dc.subject | Aprendizaje automático (Inteligencia artificial) | es_ES |
| dc.subject | Comunicaciones vía satélite | es_ES |
| dc.subject | Proceso en lenguaje natural (Informática) | es_ES |
| dc.subject.other | Artificial intelligence | es_ES |
| dc.subject.other | Evaluation models | es_ES |
| dc.subject.other | Large language models | es_ES |
| dc.subject.other | Fine tuning LLMs | es_ES |
| dc.subject.other | Preprocessing for LLMs | es_ES |
| dc.subject.other | Satellite communications | es_ES |
| dc.title | Adapting LLMs for Satellite Communications: Methodology, Challenges, and Impact. | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | AM | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 4a3a3e2b-1978-4233-9123-9ce847052934 | |
| relation.isAuthorOfPublication | d978d7e6-74cb-4240-bb3a-5693f84d80ca | |
| relation.isAuthorOfPublication | 02fc094f-5f93-4ee1-9f93-c717c528c11b | |
| relation.isAuthorOfPublication.latestForDiscovery | 4a3a3e2b-1978-4233-9123-9ce847052934 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Adapting_LLMs_for_Satellite_Communications_Methodology_Challenges_and_Impact.pdf
- Size:
- 2.05 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artículo principal
Description: Artículo principal

