Adapting LLMs for Satellite Communications: Methodology, Challenges, and Impact.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorMozo-Quesada, Alejandro Jesús
dc.contributor.authorGálvez-Rojas, Sergio
dc.contributor.authorChristou, Ioannis
dc.contributor.authorVogiatzis, Dimitrios
dc.contributor.authorNavarro, Tomás
dc.contributor.authorLópez-Valverde, Francisco
dc.date.accessioned2025-09-04T08:59:30Z
dc.date.available2025-09-04T08:59:30Z
dc.date.issued2025-09-02
dc.departamentoLenguajes y Ciencias de la Computaciónes_ES
dc.description.abstractThe application of large language models (LLMs) to specialized fields, such as Satellite Communications (SatCom), presents unique challenges due to the extensive and cutting-edge knowledge required. SatCom encompasses a wide range of technical details, protocols, and operational guidelines that must be addressed to produce effective and accurate models for practical use. This paper presents a fine-tuning approach for adapting 7-billion-parameter instructed LLMs (Llama-3v and Mistral) to SatCom, using a proprietary corpus sourced from the European Space Agency (ESA) consisting of domain-specific PDF documents. The confidential nature of this corpus imposes constraints on both model training and evaluation, demanding a sensible text extraction pipeline capable of handling complex structures, such as tables, to preserve critical information. Our fine-tuning methodology employs a carefully configured process, followed by an automatic evaluation framework using a curated Q&A set tailored to SatCom. Models were created in both non-quantified and 8-bit quantized formats, ensuring feasibility for desktop-level inference. The fine-tuned models demonstrated a 6,6% improvement over the baseline LLM, as well as significant gains when compared to retrieval-augmented generation (RAG) methods. These results indicate a promising advancement in the development of LLMs for domain-specific applications within the SatCom field.es_ES
dc.description.sponsorshipAgencia Espacial Europeaes_ES
dc.identifier.citationA. Mozo, S. Gálvez, L. T. Christou, D. Vogiatzis, T. Navarro and F. L. Valverde, "Adapting LLMs for Satellite Communications: Methodology, Challenges, and Impact," in IEEE Access, doi: 10.1109/ACCESS.2025.3605022.es_ES
dc.identifier.doi10.1109/ACCESS.2025.3605022
dc.identifier.urihttps://hdl.handle.net/10630/39759
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectInteligencia artificiales_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectComunicaciones vía satélitees_ES
dc.subjectProceso en lenguaje natural (Informática)es_ES
dc.subject.otherArtificial intelligencees_ES
dc.subject.otherEvaluation modelses_ES
dc.subject.otherLarge language modelses_ES
dc.subject.otherFine tuning LLMses_ES
dc.subject.otherPreprocessing for LLMses_ES
dc.subject.otherSatellite communicationses_ES
dc.titleAdapting LLMs for Satellite Communications: Methodology, Challenges, and Impact.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication4a3a3e2b-1978-4233-9123-9ce847052934
relation.isAuthorOfPublicationd978d7e6-74cb-4240-bb3a-5693f84d80ca
relation.isAuthorOfPublication02fc094f-5f93-4ee1-9f93-c717c528c11b
relation.isAuthorOfPublication.latestForDiscovery4a3a3e2b-1978-4233-9123-9ce847052934

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Adapting_LLMs_for_Satellite_Communications_Methodology_Challenges_and_Impact.pdf
Size:
2.05 MB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal

Collections