Resilient Bioinspired Algorithms: A Computer System Design Perspective
| dc.centro | E.T.S.I. Informática | es_ES |
| dc.contributor.author | Cotta-Porras, Carlos | |
| dc.contributor.author | Oague, Gustavo | |
| dc.date.accessioned | 2022-04-27T09:32:58Z | |
| dc.date.available | 2022-04-27T09:32:58Z | |
| dc.date.created | 2022 | |
| dc.date.issued | 2022 | |
| dc.departamento | Instituto de Tecnología e Ingeniería del Software de la Universidad de Málaga | |
| dc.description | This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this contribution is published in Cotta, C., Olague, G. (2022). Resilient Bioinspired Algorithms: A Computer System Design Perspective. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds) Applications of Evolutionary Computation. EvoApplications 2022. Lecture Notes in Computer Science, vol 13224. Springer, Cham. https://doi.org/10.1007/978-3-031-02462-7_39 | es_ES |
| dc.description.abstract | Resilience can be defined as a system's capability for returning to normal operation after having suffered a disruption. This notion is of the foremost interest in many areas, in particular engineering. We argue in this position paper that is is a crucial property for bioinspired optimization algorithms as well. Following a computer system perspective, we correlate some of the defining requirements for attaining resilient systems to issues, features, and mechanisms of these techniques. It is shown that bioinspired algorithms do not only exhibit a notorious built-in resilience, but that their plasticity also allows accommodating components that may boost it in different ways. We also provide some relevant research directions in this area. | es_ES |
| dc.description.sponsorship | Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech | es_ES |
| dc.identifier.citation | "Applications of Evolutionary Computation. EvoApplications 2022, Lecture Notes in Computer Science, vol 13224. https://doi.org/10.1007/978-3-031-02462-7_39 | es_ES |
| dc.identifier.doi | 10.1007/978-3-031-02462-7_39 | |
| dc.identifier.uri | https://hdl.handle.net/10630/23987 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | SpringerLink | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Sistemas informáticos | es_ES |
| dc.subject | Algoritmos | es_ES |
| dc.subject.other | Resilience | es_ES |
| dc.subject.other | Bioinspired Optimization | es_ES |
| dc.subject.other | Robustness | es_ES |
| dc.subject.other | Computer Systems | es_ES |
| dc.title | Resilient Bioinspired Algorithms: A Computer System Design Perspective | es_ES |
| dc.type | conference output | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 30d4b05d-dc2a-44c0-bc14-88fb05728f50 | |
| relation.isAuthorOfPublication.latestForDiscovery | 30d4b05d-dc2a-44c0-bc14-88fb05728f50 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- evostar22resilient-preprint.pdf
- Size:
- 310.09 KB
- Format:
- Adobe Portable Document Format
- Description:
- Artículo principal (submitted version)
Description: Artículo principal (submitted version)

