Detection of anomalous samples based on automatic thresholds.

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorLuo Chen, Hao Qiang
dc.contributor.authorSegura, David
dc.contributor.authorBaena-González, José Carlos
dc.contributor.authorKhatib, Emil Jatib
dc.contributor.authorBarco-Moreno, Raquel
dc.date.accessioned2024-09-11T09:48:31Z
dc.date.available2024-09-11T09:48:31Z
dc.date.issued2024
dc.departamentoIngeniería de Comunicaciones
dc.description.abstractThe high demand for better services in cellular networks is the motivation behind the evolution of said network. Currently, the Open Radio Access Network (O-RAN) paradigm was proposed to provide more intelligent management of the user radio access, improving the quality of services, by applying Artificial Intelligence (IA); and Machine Learning (ML) algorithms. Despite their high potential, ML is highly dependent on the integrity of applied data, especially in the training stage. To avoid any data alteration, in this work an algorithm for anomaly detection in network metrics is proposed. This approach is based on a state machine to determine the network behaviour and Otsu thresholding. The algorithm performance is evaluated on data obtained from a 5G microcell.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/32521
dc.language.isoenges_ES
dc.relation.eventdateJulio, 2024es_ES
dc.relation.eventplaceFlorencia, Italiaes_ES
dc.relation.eventtitle2024 IEEE Workshop on Complexity in Engineering (COMPENG 2024)es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectProcesado de imágeneses_ES
dc.subject.otherAttack on dataes_ES
dc.subject.otherKey performance indicators (KPIs)es_ES
dc.subject.otherDetectiones_ES
dc.subject.otherOtsu thresholdinges_ES
dc.subject.otherState machinees_ES
dc.titleDetection of anomalous samples based on automatic thresholds.es_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationc933e578-ad80-410f-88c2-f0dbdaa6cf72
relation.isAuthorOfPublication.latestForDiscoveryc933e578-ad80-410f-88c2-f0dbdaa6cf72

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
COMPENG_2024_Hao_abstract_acknowledgement.pdf
Size:
165.99 KB
Format:
Adobe Portable Document Format
Description: