High-order in-cell discontinuous reconstruction path-conservative methods for nonconservative hyperbolic systems–DR.MOOD method

dc.contributor.authorPimentel García, Ernesto
dc.contributor.authorCastro-Díaz, Manuel Jesús
dc.contributor.authorChalons, Christophe
dc.contributor.authorParés-Madroñal, Carlos María
dc.date.accessioned2024-08-30T11:01:53Z
dc.date.available2024-08-30T11:01:53Z
dc.date.issued2024
dc.departamentoAnálisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada
dc.description.abstractIn this work, we develop a new framework to deal numerically with discontinuous solutions in nonconservative hyperbolic systems. First an extension of the MOOD methodology to nonconservative systems based on Taylor expansions is presented. This extension combined with an in-cell discontinuous reconstruction operator are the key points to develop a new family of high-order methods that are able to capture exactly isolated shocks. Several test cases are proposed to validate these methods for the Modified Shallow Water equations and the Two-Layer Shallow Water system.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUA. The research of EPG, MC, and CP has been partially supported by the Spanish Government (SG) through the project PID2022-137637NB-C21 funded by MCIN/AEI/10.13039/501100011033 and FSE+. EPG was also financed by the European Union (NextGenerationEU).es_ES
dc.identifier.citationE. Pimentel-García, M. J. Castro, C. Chalons and C. Parés, High-order in-cell discontinuous reconstruction path-conservative methods for nonconservative hyperbolic systems–DR.MOOD method, Numer. Methods Partial Differ. Eq. (2024), e23133. https://doi.org/10.1002/num.23133es_ES
dc.identifier.doi10.1002/num.23133
dc.identifier.urihttps://hdl.handle.net/10630/32486
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectEcuaciones en derivadas parcialeses_ES
dc.subjectEcuaciones diferenciales hiperbólicases_ES
dc.subjectAnálisis numéricoes_ES
dc.subjectAnálisis matemáticoes_ES
dc.subjectMatemáticas aplicadases_ES
dc.subject.otherFinite volume methodses_ES
dc.subject.otherIn-cell discontinuous reconstructionses_ES
dc.subject.otherMOODes_ES
dc.subject.otherNonconservative hyperbolic systemses_ES
dc.subject.otherPath-conservative methodses_ES
dc.subject.otherShock-capturing methodses_ES
dc.subject.otherTwo-layer shallow water equationses_ES
dc.titleHigh-order in-cell discontinuous reconstruction path-conservative methods for nonconservative hyperbolic systems–DR.MOOD methodes_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationba2a6aeb-21e2-4d82-a79b-e346b19b2513
relation.isAuthorOfPublicationfc6c4758-5317-42be-b7fb-ed61e24e5d8a
relation.isAuthorOfPublication.latestForDiscoveryba2a6aeb-21e2-4d82-a79b-e346b19b2513

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Numerical Methods Partial - 2024 - Pimentel‐García - High‐order in‐cell discontinuous reconstruction path‐conservative.pdf
Size:
2.22 MB
Format:
Adobe Portable Document Format
Description:

Collections