Label Aided Deep Ranking for the Automatic Diagnosis of Parkinsonian Syndromes.

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorOrtiz-García, Andrés
dc.contributor.authorMartínez-Murcia, Francisco Jesús
dc.contributor.authorMunilla-Fajardo, Jorge
dc.contributor.authorGórriz-Sáez, Juan Manuel
dc.contributor.authorRamírez, Javier
dc.date.accessioned2023-11-21T12:37:28Z
dc.date.available2023-11-21T12:37:28Z
dc.date.issued2018-10-16
dc.departamentoIngeniería de Comunicaciones
dc.description.abstractParkinsonism is the second most common neurodegenerative disease in the world. Its diagnosis usually relies on visual analysis of Emission Computed Tomography (SPECT) images acquired using 123I − io f lupane radiotracer. This aims to detect a deficit of dopamine transporters at the striatum. The use of Computer Aided tools for diagnosis based on statistical data processing and machine learning methods have significantly improved the diagnosis accuracy. In this paper we propose a classification method based on Deep Ranking which learns an embedding function that projects the source images into a new space in which samples belonging to the same class are closer to each other, while samples from different classes are moved apart. Moreover, the proposed approach introduces a new cost-sensitive loss function to avoid overfitting due to class imbalance (an usual issue in practical biomedical applications), along with label information to produce sparser embedding spaces. The experiments carried out in this work demonstrate the superiority of the proposed method, improving the diagnosis accuracy achieved by previous methodologies and validate our approach as an efficient way to construct linear classifiers.es_ES
dc.description.sponsorshipThis work was partly supported by the MINECO/FEDER under TEC2015-64718- R and PSI2015-65848-R projects. We gratefully acknowledge the support of NVIDIA Corporation with the donation of one of the GPUs used for this research. PPMI - a pub435 lic - private partnership - is funded by The Michael J. Fox Foundation for Parkinson’s Research and funding partners, including Abbott, Biogen Idec, F. Hoffman-La Roche Ltd., GE Healthcare, Genentech and Pfizer Inc.es_ES
dc.identifier.citationOrtiz, Andrés & Martínez-Murcia, Francisco & Munilla, Jorge & Gorriz, Juan & Ramírez, Javier. (2018). Label Aided Deep Ranking for the Automatic Diagnosis of Parkinsonian Syndromes. Neurocomputing. 330. 10.1016/j.neucom.2018.10.074es_ES
dc.identifier.doi10.1016/j.neucom.2018.10.074
dc.identifier.urihttps://hdl.handle.net/10630/28101
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectParkinson, Enfermedad de - Diagnóstico - Proceso de datoses_ES
dc.subjectDiagnóstico - Proceso de datoses_ES
dc.subjectMedicina - Proceso de datoses_ES
dc.subjectInteligencia artificial - Aplicaciones médicases_ES
dc.subject.otherParkinsonian Syndromeses_ES
dc.subject.otherComputer aided diagnosises_ES
dc.subject.otherDeep rankinges_ES
dc.subject.otherCost-sensitive learninges_ES
dc.subject.otherLabel aided classifieres_ES
dc.subject.otherClass imbalancees_ES
dc.titleLabel Aided Deep Ranking for the Automatic Diagnosis of Parkinsonian Syndromes.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication5d9e81fc-5f53-42ea-82c8-809b9defd772
relation.isAuthorOfPublication053de28f-d29d-4745-9581-111e59a126c8
relation.isAuthorOfPublication.latestForDiscovery5d9e81fc-5f53-42ea-82c8-809b9defd772

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NEUCOM2018.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format
Description:

Collections