Federated deep reinforcement Learning for ENDC optimization

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorMartin, Adrian
dc.contributor.authorDe la Bandera Cascales, Isabel
dc.contributor.authorMendo, Adriano
dc.contributor.authorOutes, Jose
dc.contributor.authorRamiro, Juan
dc.contributor.authorBarco-Moreno, Raquel
dc.date.accessioned2025-05-12T11:58:42Z
dc.date.available2025-05-12T11:58:42Z
dc.date.issued2025-05-07
dc.departamentoIngeniería de Comunicacioneses_ES
dc.description.abstract5G New Radio (NR) network deployment in Non-Stand Alone (NSA) mode means that 5G networks rely on the control plane of existing Long Term Evolution (LTE) modules for control functions, while 5G modules are only dedicated to the user plane tasks, which could also be carried out by LTE modules simultaneously. The first deployments of 5G networks are essentially using this technology. These deployments enable what is known as E-UTRAN NR Dual Connectivity (ENDC), where a user establish a 5G connection simultaneously with a pre-existing LTE connection to boost their data rate. In this paper, a single Federated Deep Reinforcement Learning (FDRL) agent for the optimization of the event that triggers the dual connectivity between LTE and 5G is proposed. First, single Deep Reinforcement Learning (DRL) agents are trained in isolated cells. Later, these agents are merged into a unique global agent capable of optimizing the whole network with Federated Learning (FL). This scheme of training single agents and merging them also makes feasible the use of dynamic simulators for this type of learning algorithm and parameters related to mobility, by drastically reducing the number of possible combinations resulting in fewer simulations. The simulation results show that the final agent is capable of achieving a tradeoff between dropped calls and the user throughput to achieve global optimum without the need for interacting with all the cells for training.es_ES
dc.description.sponsorshipThis work was supported in part by Ericsson under Grant MA-2020-003774, through Project 702C2000043 in part by R&D&I Support Program Line through the Junta de Andalucía (Andalusian Regional Government) in part by the Ministerio de Asuntos Económicos y Transformación Digital in part by European Union - NextGenerationEU, and in part by the Recuperación, Transformación y Resiliencia y elMecanismo de Recuperación y Resiliencia through Project MAORI.es_ES
dc.identifier.citationA. Martin et al., "Federated Deep Reinforcement Learning for ENDC Optimization" in IEEE Transactions on Mobile Computing, vol. 24, no. 06, pp. 5525-5535, June 2025, doi: 10.1109/TMC.2025.3534661.es_ES
dc.identifier.doi10.1109/TMC.2025.3534661
dc.identifier.urihttps://hdl.handle.net/10630/38565
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectTelecomunicacioneses_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subject.other5 G Mobile communicationes_ES
dc.subject.otherOptimizationes_ES
dc.subject.otherLong term evolutiones_ES
dc.subject.otherTraininges_ES
dc.subject.otherHeuristic algorithmses_ES
dc.subject.otherDeep reinforcement learninges_ES
dc.subject.otherThroughputes_ES
dc.subject.otherHysteresises_ES
dc.subject.otherHandoveres_ES
dc.subject.otherFederated learninges_ES
dc.subject.otherRAN Optimizationes_ES
dc.subject.other5 G NSAes_ES
dc.subject.otherEvent B 1es_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherLearning agentes_ES
dc.subject.otherReinforcement learning agentes_ES
dc.subject.otherTraining celles_ES
dc.subject.otherDeep reinforcement learning agentes_ES
dc.subject.otherDeep neural networkes_ES
dc.subject.otherCell clusterses_ES
dc.subject.otherTraining phasees_ES
dc.subject.otherCellular networkses_ES
dc.subject.otherNeighboring cellses_ES
dc.subject.otherIndividual agencyes_ES
dc.subject.otherSmall stepes_ES
dc.subject.otherOptimal networkes_ES
dc.subject.otherUser equipmentes_ES
dc.subject.otherDeep reinforcement learning algorithmes_ES
dc.subject.otherReinforcement learning algorithmes_ES
dc.subject.otherNetwork capacityes_ES
dc.subject.otherMobile edge computinges_ES
dc.subject.otherKey performance indicatorses_ES
dc.subject.otherMulti party computationes_ES
dc.subject.otherHeterogeneous networkes_ES
dc.subject.otherRest of the cellses_ES
dc.subject.otherRate of networkes_ES
dc.titleFederated deep reinforcement Learning for ENDC optimizationes_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationc933e578-ad80-410f-88c2-f0dbdaa6cf72
relation.isAuthorOfPublication.latestForDiscoveryc933e578-ad80-410f-88c2-f0dbdaa6cf72

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10854899.pdf
Size:
2.37 MB
Format:
Adobe Portable Document Format
Description:

Collections