Strategies for the analysis of large social media corpora: sampling and keyword extraction methods

dc.centroFacultad de Filosofía y Letrases_ES
dc.contributor.authorGarcía Gámez, María
dc.contributor.authorMoreno-Ortiz, Antonio Jesús
dc.date.accessioned2024-01-31T09:46:15Z
dc.date.available2024-01-31T09:46:15Z
dc.date.created2024-01-29
dc.date.issued2022-04
dc.departamentoFilología Inglesa, Francesa y Alemana
dc.description.abstractIn the context of the COVID-19 pandemic, social media platforms such as Twitter have been of great importance for users to exchange news, ideas, and perceptions. Researchers from fields such as discourse analysis and the social sciences have resorted to this content to explore public opinion and stance on this topic, and they have tried to gather information through the compilation of large-scale corpora. However, the size of such corpora is both an advantage and a drawback, as simple text retrieval techniques and tools may prove to be impractical or altogether incapable of handling such masses of data. This study provides methodological and practical cues on how to manage the contents of a large-scale social media corpus such as Chen et al. (JMIR Public Health Surveill 6(2):e19273, 2020) COVID-19 corpus. We compare and evaluate, in terms of efficiency and efficacy, available methods to handle such a large corpus. First, we compare different sample sizes to assess whether it is possible to achieve similar results despite the size difference and evaluate sampling methods following a specific data management approach to storing the original corpus. Second, we examine two keyword extraction methodologies commonly used to obtain a compact representation of the main subject and topics of a text: the traditional method used in corpus linguistics, which compares word frequencies using a reference corpus, and graph-based techniques as developed in Natural Language Processing tasks. The methods and strategies discussed in this study enable valuable quantitative and qualitative analyses of an otherwise intractable mass of social media data.es_ES
dc.description.sponsorshipJunta de Andalucía (FEDER). )Proyecto de investigación "SentiTur: sistema de monitorización de opinión de usuarios de recursos turísticos andaluces basado en análisis de sentimiento y análisis visual." (UMA18-FEDERJA-158)es_ES
dc.identifier.citationMoreno-Ortiz, A., & García-Gámez, M. (2023). Strategies for the Analysis of Large Social Media Corpora: Sampling and Keyword Extraction Methods. Corpus Pragmatics, 7(3), 241–265. https://doi.org/10.1007/s41701-023-00143-0es_ES
dc.identifier.doi10.1007/s41701-023-00143-0
dc.identifier.urihttps://hdl.handle.net/10630/29466
dc.language.isoenges_ES
dc.publisherSpringer Linkes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectRedes sociales en internetes_ES
dc.subject.otherCOVID-19 languagees_ES
dc.subject.otherLarge-scale social media corpuses_ES
dc.subject.otherSampling methodses_ES
dc.subject.otherSampling sizeses_ES
dc.subject.otherKeyword extractiones_ES
dc.titleStrategies for the analysis of large social media corpora: sampling and keyword extraction methodses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication3233c4af-5a32-40f2-9c82-103bc48c43cd
relation.isAuthorOfPublication.latestForDiscovery3233c4af-5a32-40f2-9c82-103bc48c43cd

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Corpus Pragmatics 2022-full.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal

Collections