Blueprint for a minimal photoautotrophic cell: conserved and variable genes in Synechococcus elongatus PCC 7942

Loading...
Thumbnail Image

Files

Blueprint.pdf (2.71 MB)

Description: Versión publicada

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

BMC

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

Background: Simpler biological systems should be easier to understand and to engineer towards pre-defined goals. One way to achieve biological simplicity is through genome minimization. Here we looked for genomic islands in the fresh water cyanobacteria Synechococcus elongatus PCC 7942 (genome size 2.7 Mb) that could be used as targets for deletion. We also looked for conserved genes that might be essential for cell survival.Results: By using a combination of methods we identified 170 xenologs, 136 ORFans and 1401 core genes in the genome of S. elongatus PCC 7942. These represent 6.5%, 5.2% and 53.6% of the annotated genes respectively. We considered that genes in genomic islands could be found if they showed a combination of: a) unusual G+C content; b) unusual phylogenetic similarity; and/or c) a small number of the highly iterated palindrome 1 (HIP1) motif plus an unusual codon usage. The origin of the largest genomic island by horizontal gene transfer (HGT) could be corroborated by lack of coverage among metagenomic sequences from a fresh water microbialite. Evidence is also presented that xenologous genes tend to cluster in operons. Interestingly, most genes coding for proteins with a diguanylate cyclase domain are predicted to be xenologs, suggesting a role for horizontal gene transfer in the evolution of Synechococcus sensory systems.Conclusions: Our estimates of genomic islands in PCC 7942 are larger than those predicted by other published methods like SIGI-HMM. Our results set a guide to non-essential genes in S. elongatus PCC 7942 indicating a path towards the engineering of a model photoautotrophic bacterial cell.

Description

Bibliographic citation

Delaye L, González-Domenech CM, Garcillán-Barcia MP, Peretó J, de la Cruz F, Moya A. Blueprint for a minimal photoautotrophic cell: conserved and variable genes in Synechococcus elongatus PCC 7942. BMC Genomics. 2011 Jan 12;12:25. doi: 10.1186/1471-2164-12-25.

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional