An Efficient QAOA via a Polynomial QPU-Needless Approach.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorChicano-García, José-Francisco
dc.contributor.authorDahi, Zakaria Abdelmoiz
dc.contributor.authorLuque-Polo, Gabriel Jesús
dc.date.accessioned2023-10-05T07:42:49Z
dc.date.available2023-10-05T07:42:49Z
dc.date.created2023-10-05
dc.date.issued2023
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.description.abstractThe Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantum algorithm described as ansatzes that represent both the problem and the mixer Hamiltonians. Both are parameterizable unitary transformations executed on a quantum machine/simulator and whose parameters are iteratively optimized using a classical device to optimize the problem’s expectation value. To do so, in each QAOA iteration, most of the literature uses a quantum machine/simulator to measure the QAOA outcomes. However, this poses a severe bottleneck considering that quantum machines are hardly constrained (e.g. long queuing, limited qubits, etc.), likewise, quantum simulation also induces exponentially-increasing memory usage when dealing with large problems requiring more qubits. These limitations make today’s QAOA implementation impractical since it is hard to obtain good solutions with a reasonably-acceptable time/resources. Considering these facts, this work presents a new approach with two main contributions, including (I) removing the need for accessing quantum devices or large-sized classical machines during the QAOA optimization phase, and (II) ensuring that when dealing with some 𝑘-bounded pseudo-Boolean problems, optimizing the exact problem’s expectation value can be done in polynomial time using a classical computer.es_ES
dc.description.sponsorshipThis work is partially funded by Universidad de Málaga, Ministerio de Ciencia, Innovación y Universidades del Gobierno de España under grants PID 2020-116727RB-I00 (funded by MCIN/AEI/ 10.13039/501100011033) and PRX21/00669; and TAILOR ICT-48 Net- work (No 952215) funded by EU Horizon 2020 research and innovation programme. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/27752
dc.language.isoenges_ES
dc.relation.eventdate15/7/2023es_ES
dc.relation.eventplaceLisboa, Portugales_ES
dc.relation.eventtitleWokrshop on Quantum Optimization in Genetic and Evolutionary Computation Conferencees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMatemáticas computacionaleses_ES
dc.subjectOptimización combinatoriaes_ES
dc.subjectComputación cuánticaes_ES
dc.subject.otherQuantum Approximate Optimization Algorithmes_ES
dc.subject.otherCombinatorial optimizationes_ES
dc.subject.otherQuantum computinges_ES
dc.titleAn Efficient QAOA via a Polynomial QPU-Needless Approach.es_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication6f65e289-6502-4756-871c-dbe0ca9be545
relation.isAuthorOfPublicationfbed2a0e-573c-4118-97c4-2f2e584e4688
relation.isAuthorOfPublication.latestForDiscovery6f65e289-6502-4756-871c-dbe0ca9be545

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
main-riuma.pdf
Size:
716.91 KB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal