An Efficient QAOA via a Polynomial QPU-Needless Approach.
| dc.centro | E.T.S.I. Informática | es_ES |
| dc.contributor.author | Chicano-García, José-Francisco | |
| dc.contributor.author | Dahi, Zakaria Abdelmoiz | |
| dc.contributor.author | Luque-Polo, Gabriel Jesús | |
| dc.date.accessioned | 2023-10-05T07:42:49Z | |
| dc.date.available | 2023-10-05T07:42:49Z | |
| dc.date.created | 2023-10-05 | |
| dc.date.issued | 2023 | |
| dc.departamento | Instituto de Tecnología e Ingeniería del Software de la Universidad de Málaga | |
| dc.description.abstract | The Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantum algorithm described as ansatzes that represent both the problem and the mixer Hamiltonians. Both are parameterizable unitary transformations executed on a quantum machine/simulator and whose parameters are iteratively optimized using a classical device to optimize the problem’s expectation value. To do so, in each QAOA iteration, most of the literature uses a quantum machine/simulator to measure the QAOA outcomes. However, this poses a severe bottleneck considering that quantum machines are hardly constrained (e.g. long queuing, limited qubits, etc.), likewise, quantum simulation also induces exponentially-increasing memory usage when dealing with large problems requiring more qubits. These limitations make today’s QAOA implementation impractical since it is hard to obtain good solutions with a reasonably-acceptable time/resources. Considering these facts, this work presents a new approach with two main contributions, including (I) removing the need for accessing quantum devices or large-sized classical machines during the QAOA optimization phase, and (II) ensuring that when dealing with some 𝑘-bounded pseudo-Boolean problems, optimizing the exact problem’s expectation value can be done in polynomial time using a classical computer. | es_ES |
| dc.description.sponsorship | This work is partially funded by Universidad de Málaga, Ministerio de Ciencia, Innovación y Universidades del Gobierno de España under grants PID 2020-116727RB-I00 (funded by MCIN/AEI/ 10.13039/501100011033) and PRX21/00669; and TAILOR ICT-48 Net- work (No 952215) funded by EU Horizon 2020 research and innovation programme. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10630/27752 | |
| dc.language.iso | eng | es_ES |
| dc.relation.eventdate | 15/7/2023 | es_ES |
| dc.relation.eventplace | Lisboa, Portugal | es_ES |
| dc.relation.eventtitle | Wokrshop on Quantum Optimization in Genetic and Evolutionary Computation Conference | es_ES |
| dc.rights | Atribución 4.0 Internacional | * |
| dc.rights.accessRights | open access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject | Matemáticas computacionales | es_ES |
| dc.subject | Optimización combinatoria | es_ES |
| dc.subject | Computación cuántica | es_ES |
| dc.subject.other | Quantum Approximate Optimization Algorithm | es_ES |
| dc.subject.other | Combinatorial optimization | es_ES |
| dc.subject.other | Quantum computing | es_ES |
| dc.title | An Efficient QAOA via a Polynomial QPU-Needless Approach. | es_ES |
| dc.type | conference output | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 6f65e289-6502-4756-871c-dbe0ca9be545 | |
| relation.isAuthorOfPublication | fbed2a0e-573c-4118-97c4-2f2e584e4688 | |
| relation.isAuthorOfPublication.latestForDiscovery | 6f65e289-6502-4756-871c-dbe0ca9be545 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- main-riuma.pdf
- Size:
- 716.91 KB
- Format:
- Adobe Portable Document Format
- Description:
- Artículo principal
Description: Artículo principal

