Distributionally Robust Optimal Power Flow with Contextual Information

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorEsteban-Pérez, Adrián
dc.contributor.authorMorales-González, Juan Miguel
dc.date.accessioned2022-10-21T09:28:07Z
dc.date.available2022-10-21T09:28:07Z
dc.date.created2022
dc.date.issued2022-10
dc.departamentoMatemática Aplicada
dc.descriptionAdrián Esteban-Pérez, Juan M. Morales, Distributionally Robust Optimal Power Flow with Contextual Information, European Journal of Operational Research (2022), doi: https://doi.org/10.1016/j.ejor.2022.10.024es_ES
dc.description.abstractIn this paper, we develop a distributionally robust chance-constrained formulation of the Optimal Power Flow problem (OPF) whereby the system operator can leverage contextual information. For this purpose, we exploit an ambiguity set based on probability trimmings and optimal transport through which the dispatch solution is protected against the incomplete knowledge of the relationship between the OPF uncertainties and the context that is conveyed by a sample of their joint probability distribution. We provide a tractable reformulation of the proposed distributionally robust chance-constrained OPF problem under the popular conditional-value-at-risk approximation. By way of numerical experiments run on a modified IEEE-118 bus network with wind uncertainty, we show how the power system can substantially benefit from taking into account the well-known statistical dependence between the point forecast of wind power outputs and its associated prediction error. Furthermore, the experiments conducted also reveal that the distributional robustness conferred on the OPF solution by our probability-trimmings-based approach is superior to that bestowed by alternative approaches in terms of expected cost and system reliability.es_ES
dc.description.sponsorshipEuropean Research Council (755705); Ministerio de Ciencia e Innovación del Gobierno de España (PID2020- 115460GB-I00/AEI/10.13039/501100011033); Junta de Andalucía y fondos FEDER (P20 00153); Universidad de Málagaes_ES
dc.identifier.doihttps://doi.org/10.1016/j.ejor.2022.10.024
dc.identifier.urihttps://hdl.handle.net/10630/25267
dc.language.isospaes_ES
dc.publisherElsevier B. V.es_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectEnergía eólica -- distribuciónes_ES
dc.subject.otherOR in Energyes_ES
dc.subject.otherOptimal Power Flowes_ES
dc.subject.otherDistributionally robust chance-constrained optimizationes_ES
dc.subject.otherWasserstein metrices_ES
dc.subject.otherContextual informationes_ES
dc.titleDistributionally Robust Optimal Power Flow with Contextual Informationes_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication21d3b665-5e30-48ed-83c0-c14b65100f6c
relation.isAuthorOfPublication.latestForDiscovery21d3b665-5e30-48ed-83c0-c14b65100f6c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0377221722008128-main.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
Description:
Cuerpo principal del artículo
Download

Description: Cuerpo principal del artículo

Collections