Facile synthesis of visible-responsive photocatalytic Eu-doped layered double hydroxide for selective removal of NOx pollutant

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

Efficient nitrogen oxides (NOx) removal from the urban atmosphere is still a target for the researchers. Herein, a Zn2Al-CO3 based layered double hydroxide (LDH) was doped with increasing amounts of Eu3+ (0.01–0.04) and the photocatalytic oxidation of NOx gases was investigated. The LDHs were synthesized by a facile coprecipitation method at room temperature and ambient pressure. The successful Eu3+ substitution in the LDH layers induces a shift in the M−O bonds that modifies the electronic band structure of the doped photocatalysts. Compared to the undoped LDH, the NOx removal efficiency was enhanced by ∼ 17–25 % under UV–Vis light irradiation. Remarkably, a NOx removal efficiency of ∼ 47 % was attained by the optimally doped LDH under Visible irradiation (420 nm), surpassing raw LDH (∼ 9 %). Moreover, the Eu3+ doped LDHs retained its photocatalytic efficiency during long periods of irradiation during consecutive tests with high selectivity (>90 %). Photoluminescence studies indicated that Eu3+ was located in a non-centrosymmetric position, thereby producing structural disorder within the lattice. Eu doping promoted charge separation and a higher production of ⋅OH radicals as verified by time-resolved photoluminescence and electron paramagnetic resonance, respectively. We believe this work reports unprecedent results obtained by Eu-doping of Zn2Al-based LDHs under visible light for NOx photooxidation and serves as a new strategy to prepare functional LDHs for other photocatalytic applications

Description

Bibliographic citation

Adrián Pastor, Chunping Chen, Gustavo de Miguel, Francisco Martín, Manuel Cruz-Yusta, Dermot O'Hare, Ivana Pavlovic, Luis Sánchez. Facile synthesis of visible-responsive photocatalytic Eu-doped layered double hydroxide for selective removal of NOx pollutant, Chemical Engineering Journal, Volume 471, 2023, 144464

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional