SkyFlow: heterogeneous streaming for skyline computation using FlowGraph and SYCL
| dc.centro | E.T.S.I. Informática | es_ES |
| dc.contributor.author | Romero, José Carlos | |
| dc.contributor.author | González-Navarro, María Ángeles | |
| dc.contributor.author | Rodríguez-Moreno, Andrés | |
| dc.contributor.author | Asenjo-Plaza, Rafael | |
| dc.date.accessioned | 2023-04-24T13:02:01Z | |
| dc.date.available | 2023-04-24T13:02:01Z | |
| dc.date.created | 2023-04-24 | |
| dc.date.issued | 2022-11-24 | |
| dc.departamento | Ingeniería Eléctrica | |
| dc.description.abstract | The skyline is an optimization operator widely used for multi-criteria decision making. It allows minimizing an n-dimensional dataset into its smallest subset. In this work we present SkyFlow, the first heterogeneous CPU+GPU graph-based engine for skyline computation on a stream of data queries. Two data flow approaches, Coarse-grained and Fine-grained, have been proposed for different streaming scenarios. Coarse-grained aims to keep in parallel the computation of two queries using a hybrid solution with two state-of-the-art skyline algorithms: one optimized for CPU and another for GPU. We also propose a model to estimate at runtime the computation time of any arriving data query. This estimation is used by a heuristic to schedule the data query on the device queue in which it will finish earlier. On the other hand, Fine-grained splits one query computation between CPU and GPU. An experimental evaluation using as target architecture a heterogeneous system comprised of a multicore CPU and an integrated GPU for different streaming scenarios and datasets, reveals that our heterogeneous CPU+GPU approaches always outperform previous only-CPU and only-GPU state-of-the-art implementations up to 6.86×and 5.19×, respectively, and they fall below 6% of ideal peak performance at most. We also evaluate Coarse-grained vs Fine-Grained finding that each approach is better suited to different streaming scenarios. | es_ES |
| dc.description.sponsorship | This work was partially supported by the Spanish projects PID2019-105396RB-I00, UMA18-FEDERJA-108 and P20-00395-R. // Funding for open access charge: Universidad de Málaga / CBUA . | es_ES |
| dc.identifier.citation | Romero, J. C., Navarro, A., Rodríguez, A., & Asenjo, R. (2023). SkyFlow: Heterogeneous streaming for skyline computation using FlowGraph and SYCL. Future Generation Computer Systems, 141, 269-283. | es_ES |
| dc.identifier.doi | https://doi.org/10.1016/j.future.2022.11.021 | |
| dc.identifier.uri | https://hdl.handle.net/10630/26397 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Elsevier | es_ES |
| dc.rights | Atribución 4.0 Internacional | * |
| dc.rights.accessRights | open access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject | Lenguajes de programación | es_ES |
| dc.subject | Sistemas de informacion | es_ES |
| dc.subject | Sistemas de soporte a la decisión | es_ES |
| dc.subject.other | Skyline | es_ES |
| dc.subject.other | Stream of queries | es_ES |
| dc.subject.other | Heterogeneous computing | es_ES |
| dc.subject.other | Integrated GPU | es_ES |
| dc.subject.other | OneAPI | es_ES |
| dc.subject.other | SYCL | es_ES |
| dc.title | SkyFlow: heterogeneous streaming for skyline computation using FlowGraph and SYCL | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | VoR | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 0857b903-5728-47c9-b298-a203bf081d23 | |
| relation.isAuthorOfPublication | b215fbc9-d0f2-4bbb-a17c-e6055e984f68 | |
| relation.isAuthorOfPublication | 6ea008bf-69ee-4104-a942-2033b5b07ab8 | |
| relation.isAuthorOfPublication.latestForDiscovery | 0857b903-5728-47c9-b298-a203bf081d23 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S0167739X2200382X-main.pdf
- Size:
- 1.08 MB
- Format:
- Adobe Portable Document Format
- Description:

