SkyFlow: heterogeneous streaming for skyline computation using FlowGraph and SYCL

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorRomero, José Carlos
dc.contributor.authorGonzález-Navarro, María Ángeles
dc.contributor.authorRodríguez-Moreno, Andrés
dc.contributor.authorAsenjo-Plaza, Rafael
dc.date.accessioned2023-04-24T13:02:01Z
dc.date.available2023-04-24T13:02:01Z
dc.date.created2023-04-24
dc.date.issued2022-11-24
dc.departamentoIngeniería Eléctrica
dc.description.abstractThe skyline is an optimization operator widely used for multi-criteria decision making. It allows minimizing an n-dimensional dataset into its smallest subset. In this work we present SkyFlow, the first heterogeneous CPU+GPU graph-based engine for skyline computation on a stream of data queries. Two data flow approaches, Coarse-grained and Fine-grained, have been proposed for different streaming scenarios. Coarse-grained aims to keep in parallel the computation of two queries using a hybrid solution with two state-of-the-art skyline algorithms: one optimized for CPU and another for GPU. We also propose a model to estimate at runtime the computation time of any arriving data query. This estimation is used by a heuristic to schedule the data query on the device queue in which it will finish earlier. On the other hand, Fine-grained splits one query computation between CPU and GPU. An experimental evaluation using as target architecture a heterogeneous system comprised of a multicore CPU and an integrated GPU for different streaming scenarios and datasets, reveals that our heterogeneous CPU+GPU approaches always outperform previous only-CPU and only-GPU state-of-the-art implementations up to 6.86×and 5.19×, respectively, and they fall below 6% of ideal peak performance at most. We also evaluate Coarse-grained vs Fine-Grained finding that each approach is better suited to different streaming scenarios.es_ES
dc.description.sponsorshipThis work was partially supported by the Spanish projects PID2019-105396RB-I00, UMA18-FEDERJA-108 and P20-00395-R. // Funding for open access charge: Universidad de Málaga / CBUA .es_ES
dc.identifier.citationRomero, J. C., Navarro, A., Rodríguez, A., & Asenjo, R. (2023). SkyFlow: Heterogeneous streaming for skyline computation using FlowGraph and SYCL. Future Generation Computer Systems, 141, 269-283.es_ES
dc.identifier.doihttps://doi.org/10.1016/j.future.2022.11.021
dc.identifier.urihttps://hdl.handle.net/10630/26397
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectLenguajes de programaciónes_ES
dc.subjectSistemas de informaciones_ES
dc.subjectSistemas de soporte a la decisiónes_ES
dc.subject.otherSkylinees_ES
dc.subject.otherStream of querieses_ES
dc.subject.otherHeterogeneous computinges_ES
dc.subject.otherIntegrated GPUes_ES
dc.subject.otherOneAPIes_ES
dc.subject.otherSYCLes_ES
dc.titleSkyFlow: heterogeneous streaming for skyline computation using FlowGraph and SYCLes_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication0857b903-5728-47c9-b298-a203bf081d23
relation.isAuthorOfPublicationb215fbc9-d0f2-4bbb-a17c-e6055e984f68
relation.isAuthorOfPublication6ea008bf-69ee-4104-a942-2033b5b07ab8
relation.isAuthorOfPublication.latestForDiscovery0857b903-5728-47c9-b298-a203bf081d23

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0167739X2200382X-main.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
Description:

Collections