Multifaceted evolution focused on maximal exploitation of domain knowledge for the consensus inference of Gene Regulatory Networks

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorSegura Ortiz, Adrián
dc.contributor.authorGiménez-Orenga, Karen
dc.contributor.authorGarcía-Nieto, José Manuel
dc.contributor.authorOltra, Elisa
dc.contributor.authorAldana-Montes, José Francisco
dc.date.accessioned2025-07-09T10:09:13Z
dc.date.available2025-07-09T10:09:13Z
dc.date.issued2025-06-30
dc.departamentoLenguajes y Ciencias de la Computaciónes_ES
dc.description.abstractThe inference of gene regulatory networks (GRNs) is a fundamental challenge in systems biology, aiming to decipher gene interactions from expression data. However, traditional inference techniques exhibit disparities in their results and a clear preference for specific datasets. To address this issue, we present BIO-INSIGHT (Biologically Informed Optimizer - INtegrating Software to Infer GRNs by Holistic Thinking), a parallel asynchronous many-objective evolutionary algorithm that optimizes the consensus among multiple inference methods guided by biologically relevant objectives. BIO-INSIGHT has been evaluated on an academic benchmark of 106 GRNs, comparing its performance against MO-GENECI and other consensus strategies. The results show a statistically significant improvement in AUROC and AUPR, demonstrating that biologically guided optimization outperforms primarily mathematical approaches. Additionally, BIO-INSIGHT was applied to gene expression data from patients with fibromyalgia, myalgic encephalomyelitis, and co-diagnosis of both diseases. The inferred networks revealed regulatory interactions specific to each condition, suggesting its clinical utility in biomarker identification and potential therapeutic targets. The robustness and ingenuity of BIO-INSIGHT consolidate its potential as an innovative tool for GRN inference, enabling the generation of more accurate and biologically feasible networks. The source code is hosted in a public GitHub repository under the MIT license: https://github.com/AdrianSeguraOrtiz/BIO-INSIGHT. Moreover, to facilitate its reproducibility and usage, the software associated with this implementation has been packaged into a Python library available on PyPI: https://pypi.org/project/GENECI/3.0.1/.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUAes_ES
dc.identifier.citationAdrián Segura-Ortiz, Karen Giménez-Orenga, José García-Nieto, Elisa Oltra, José F. Aldana-Montes, Multifaceted evolution focused on maximal exploitation of domain knowledge for the consensus inference of Gene Regulatory Networks, Computers in Biology and Medicine, Volume 196, Part A, 2025, 110632, ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2025.110632. (https://www.sciencedirect.com/science/article/pii/S0010482525009837)es_ES
dc.identifier.doi10.1016/j.compbiomed.2025.110632
dc.identifier.urihttps://hdl.handle.net/10630/39277
dc.language.isoenges_ES
dc.publisherELSEVIERes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectGenéticaes_ES
dc.subjectIngeniería genéticaes_ES
dc.subjectBioinformáticaes_ES
dc.subjectIngeniería biomédicaes_ES
dc.subjectGenómicaes_ES
dc.subjectInteligencia artificial - Aplicaciones médicases_ES
dc.subject.otherGene regulatory networkes_ES
dc.subject.otherInferencees_ES
dc.subject.otherExpression dataes_ES
dc.subject.otherMany-objective evolutionary algorithmes_ES
dc.subject.otherConsensuses_ES
dc.titleMultifaceted evolution focused on maximal exploitation of domain knowledge for the consensus inference of Gene Regulatory Networkses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication04a9ec70-bfda-4089-b4d7-c24dd0870d17
relation.isAuthorOfPublication7eac9d6a-0152-4268-8207-ea058c82e531
relation.isAuthorOfPublication.latestForDiscovery04a9ec70-bfda-4089-b4d7-c24dd0870d17

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0010482525009837-main.pdf
Size:
4.95 MB
Format:
Adobe Portable Document Format
Description:

Collections