Pruning dominated policies in multiobjective Pareto Q-learning
| dc.centro | E.T.S.I. Informática | en_US |
| dc.contributor.author | Mandow-Andaluz, Lorenzo | |
| dc.contributor.author | Pérez-de-la-Cruz-Molina, José Luis | |
| dc.date.accessioned | 2019-10-18T12:34:39Z | |
| dc.date.available | 2019-10-18T12:34:39Z | |
| dc.date.created | 2018 | |
| dc.date.issued | 2019-10-18 | |
| dc.departamento | Lenguajes y Ciencias de la Computación | |
| dc.description.abstract | The solution for a Multi-Objetive Reinforcement Learning problem is a set of Pareto optimal policies. MPQ-learning is a recent algorithm that approximates the whole set of all Pareto-optimal deterministic policies by directly generalizing Q-learning to the multiobjective setting. In this paper we present a modification of MPQ-learning that avoids useless cyclical policies and thus improves the number of training steps required for convergence. | en_US |
| dc.description.sponsorship | Supported by: the Spanish Government, Agencia Estatal de Investigaci´on (AEI) and European Union, Fondo Europeo de Desarrollo Regional (FEDER), grant TIN2016-80774-R (AEI/FEDER, UE); and Plan Propio de Investigación de la Universidad de Málaga - Campus de Excelencia Internacional Andalucía Tech. | en_US |
| dc.identifier.doi | https://doi.org/10.1007/978-3-030-00374-6_23 | |
| dc.identifier.uri | https://hdl.handle.net/10630/18600 | |
| dc.language.iso | eng | en_US |
| dc.rights.accessRights | open access | en_US |
| dc.subject | Aprendizaje | en_US |
| dc.title | Pruning dominated policies in multiobjective Pareto Q-learning | en_US |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | SMUR | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | b4b11711-73ab-4cd0-854c-8ab2735e829d | |
| relation.isAuthorOfPublication | b7e65043-46cc-445b-8d8f-b4c7ad4f1c06 | |
| relation.isAuthorOfPublication.latestForDiscovery | b4b11711-73ab-4cd0-854c-8ab2735e829d |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 18-caepia-v3-riuma.pdf
- Size:
- 364.81 KB
- Format:
- Adobe Portable Document Format
- Description:

