Optimalidad en la conjetura débil de Muckenhoupt-Wheeden

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Authors

Ombrosi, Sheldy J.

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

En el año 2009 conjuntamente con A. Lerner y C. P\'erez probamos que la dependencia en relación a la constante $[w]_A_1$ de un peso $w$ en el tipo débil (1,1) de la cualquier operador de Calderón-Zygmund se puede controlar por $ [w]_A_1 x log([w]_A_1+e)$. Que la dependencia fuese lineal se conocía como conjetura débil de Muckenhoupt y Wheeden. Posteriormente, F. Nazarov, A. Reznikov, V. Vasyunin y A. Volberg probaron que no es posible dependencia lineal en general, de hecho probaron que la dependencia debía ser al menos $ [w]_A_1 x log^{1/3}([w]_A_1+e)$ para la Transformada Martingala y conjeturaron que nuestra estimación debería ser óptima. Finalmente en un trabajo reciente conjuntamente con A. Lerner y F. Nazarov probamos la optimalidad de la estimación por $ [w]_A_1 x log([w]_A_1+e)$ para la Transformada de Hilbert. En esta charla daremos una idea general de como obtener este resultado.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by