Multimodal feature fusion for CNN-based gait recognition: an empirical comparison
Loading...
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer London
Share
Center
Department/Institute
Keywords
Abstract
This paper focuses on identifying people based on their gait using a non-invasive approach. Traditional methods rely on gait signatures derived from binary energy maps, which introduce noise. Instead, the authors explore the use of raw pixel data and compare different Convolutional Neural Network (CNN) architectures across three modalities: gray pixels, optical flow, and depth maps. Tested on the TUM-GAID and CASIA-B datasets, the study finds that (i) raw pixel values are competitive with traditional silhouette-based features, (ii) combining pixel data with optical flow and depth maps yields state-of-the-art results even at lower image resolutions, and (iii) the choice of CNN architecture significantly impacts performance.
Description
Bibliographic citation
Castro, F.M., Marín-Jiménez, M.J., Guil, N. et al. Multimodal feature fusion for CNN-based gait recognition: an empirical comparison. Neural Comput & Applic 32, 14173–14193 (2020). https://doi.org/10.1007/s00521-020-04811-z
Collections
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional










