Self-Organized Maps

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

2021-04-09

Collaborators

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

UMA Editorial

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

Los mapas auto-organizados o redes de Kohonen (SOM por sus siglas en inglés, self-organizing map) fueron introducidos por el profesor finlandés Teuvo Kalevi Kohonen en los años 80. Un mapa auto-organizado es una herramienta que analiza datos en muchas dimensiones con relaciones complejas entre ellos y los reduce o representa en, usualmente, una, dos o tres dimensiones. La propiedad más importante de una SOM es que preserva las propiedades topológicas de los datos, es decir, que datos próximos aparecen próximos en la representación. La literatura relacionada con los mapas auto-organizados y sus aplicaciones es muy diversa y numerosa. Las neuronas en un mapa auto-organizado clásico están distribuidas en una topología (o malla) bidimensional cuadrada o hexagonal y las distancias entre ellas son distancias euclídeas. Una de las disciplinas de investigación en SOM consiste en la modificación y generalización del algoritmo SOM. Esta Tesis Doctoral por compendio de publicaciones se centra en esta línea de investigación. En concreto, los objetivos desarrollados han sido el estudio de topologías bidimensionales alternativas, el estudio comparativo de topologías de una, dos y tres dimensiones y el estudio de variaciones para la distancia y movimientos euclídeos. Estos objetivos se han abordado mediante el método científico a través de las siguientes fases: aprehensión de resultados conocidos, planteamiento de hipótesis, propuesta de métodos alternativos, confrontación de métodos mediante experimentación, aceptación y rechazo de las diversas hipótesis mediante métodos estadísticos.

Description

Se han obtenido los siguientes resultados: (1) Estudio de topologías bidimensionales alternativas: se muestra la importancia de topologías alternativas basadas en áreas ajenas como las teselaciones. (2) Estudio comparativo de topologías en una, dos y tres dimensiones: se revela la influencia de la dimensión en el funcionamiento de una SOM a escala local y global. (3) Estudio de alternativas al movimiento euclídeo: se propone y presenta la alternativa FRSOM al algoritmo SOM clásico. En FRSOM, las neuronas esquivan barreras predefinidas en su movimiento. Las conclusiones más relevantes que emanan de esta Tesis Doctoral son las siguientes: (1) La calidad del clustering y de la preservación topológica de una SOM puede ser mejorada mediante el uso de topologías alternativas y también evitando regiones prohibidas que no contribuyan significativamente al Error Cuadrático Medio (ECM). (2) La dimensióon de la SOM que obtiene mejores resultados es la propia dimensión intrínseca de los datos. Además, en general, valores bajos para la dimensión de la SOM producen mejores resultados en términos del ECM, y valores altos ocasionan mejor aprendizaje de la estructura de los datos.

Bibliographic citation

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional