An iterative price-based combinatorial double auction for additive manufacturing markets.

Loading...
Thumbnail Image

Files

paper Anton et al 2024 CAIE.pdf (1.74 MB)

Description: Artículo principal

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

The increasing adoption of additive manufacturing (AM) in the industrial sector is leading to an imbalance between supply and demand of additively manufactured subcomponents: companies demanding AM services require very specific products and AM suppliers differ widely in their capabilities. Some existing proposals aim to help match supply and demand by merely making customer–supplier allocations. Only a few recent works go beyond allocation issues and propose market mechanisms to also address pricing aspects. However, we observe that these mechanisms do not fully exploit the potential of additive manufacturing techniques. The aim of this paper is to design a market mechanism that considers the particularity of AM techniques, wherein suppliers can benefit from manufacturing multiple heterogeneous parts from multiple customers in the same build area to increase production throughput. This market mechanism has been implemented as an iterative combinatorial double auction that adapts to this feature of the AM market: customers will bid to get their orders produced and suppliers will submit asking quotes to win the production of combinations of those orders. The mechanism solves the allocation and pricing of AM orders while seeking the maximization of social welfare. The procedure is simulated in a theoretical environment to evaluate its performance and to identify the most appropriate conditions for its implementation in a real environment. Unlike other existing proposals for client-supplier allocation mechanisms in additive manufacturing, the proposed mechanism allows a single supplier to produce a combination of orders from different clients, leading to a pricing system that maximizes social welfare without participants disclosing sensitive information.

Description

Bibliographic citation

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional