Is NSGA-II Ready for Large-ScaleMulti-Objective Optimization?
| dc.centro | E.T.S.I. Telecomunicación | es_ES |
| dc.contributor.author | Nebro-Urbaneja, Antonio Jesús | |
| dc.contributor.author | Galeano-Brajones, Jesús | |
| dc.contributor.author | Luna-Valero, Francisco | |
| dc.contributor.author | Coello Coello, Carlos A. | |
| dc.date.accessioned | 2025-01-20T18:11:11Z | |
| dc.date.available | 2025-01-20T18:11:11Z | |
| dc.date.issued | 2022-11-30 | |
| dc.departamento | Lenguajes y Ciencias de la Computación | |
| dc.description.abstract | NSGA-II is, by far, the most popular metaheuristic that has been adopted for solving multi-objective optimization problems. However, its most common usage, particularly when dealing with continuous problems, is circumscribed to a standard algorithmic configuration similar to the one described in its seminal paper. In this work, our aim is to show that the performance of NSGA-II, when properly configured, can be significantly improved in the context of large-scale optimization. It leverages a combination of tools for automated algorithmic tuning called irace, and a highly configurable version of NSGA-II available in the jMetal framework. Two scenarios are devised: first, by solving the Zitzler–Deb–Thiele (ZDT) test problems, and second, when dealing with a binary realworld problem of the telecommunications domain. Our experiments reveal that an auto-configured version of NSGA-II can properly address test problems ZDT1 and ZDT2 with up to 217 = 131, 072 decision variables. The same methodology, when applied to the telecommunications problem, shows that significant improvements can be obtained with respect to the original NSGA-II algorithm when solving problems with thousands of bits. | es_ES |
| dc.description.sponsorship | Partial funding for open access charge: Universidad de Málaga | es_ES |
| dc.identifier.citation | Nebro, A.J.; Galeano- Brajones, J.; Luna, F.; Coello Coello, C.A. Is NSGA-II Ready for Large-Scale Multi-Objective Optimization? Math. Comput. Appl. 2022, 27, 103. https://doi.org/ 10.3390/mca27060103 | es_ES |
| dc.identifier.doi | 10.3390/mca27060103 | |
| dc.identifier.uri | https://hdl.handle.net/10630/36589 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | MDPI | es_ES |
| dc.rights | Atribución 4.0 Internacional | * |
| dc.rights.accessRights | open access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject | Programación heurística | es_ES |
| dc.subject | Algoritmos genéticos | es_ES |
| dc.subject | Computación evolutiva | es_ES |
| dc.subject | Optimización matemática | es_ES |
| dc.subject.other | NSGA-II | es_ES |
| dc.subject.other | Auto-configuration and auto-design of metaheuristics | es_ES |
| dc.subject.other | Large-scale multi-objective optimization | es_ES |
| dc.subject.other | Real-world problems optimization | es_ES |
| dc.title | Is NSGA-II Ready for Large-ScaleMulti-Objective Optimization? | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | VoR | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | eddeb2e3-acaf-483e-bb13-cebb22c18413 | |
| relation.isAuthorOfPublication | 91a7952c-23fe-4c2c-99cb-abbc3b36d084 | |
| relation.isAuthorOfPublication.latestForDiscovery | eddeb2e3-acaf-483e-bb13-cebb22c18413 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- mca-27-00103.pdf
- Size:
- 928.58 KB
- Format:
- Adobe Portable Document Format
- Description:

