Is NSGA-II Ready for Large-ScaleMulti-Objective Optimization?

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorNebro-Urbaneja, Antonio Jesús
dc.contributor.authorGaleano-Brajones, Jesús
dc.contributor.authorLuna-Valero, Francisco
dc.contributor.authorCoello Coello, Carlos A.
dc.date.accessioned2025-01-20T18:11:11Z
dc.date.available2025-01-20T18:11:11Z
dc.date.issued2022-11-30
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractNSGA-II is, by far, the most popular metaheuristic that has been adopted for solving multi-objective optimization problems. However, its most common usage, particularly when dealing with continuous problems, is circumscribed to a standard algorithmic configuration similar to the one described in its seminal paper. In this work, our aim is to show that the performance of NSGA-II, when properly configured, can be significantly improved in the context of large-scale optimization. It leverages a combination of tools for automated algorithmic tuning called irace, and a highly configurable version of NSGA-II available in the jMetal framework. Two scenarios are devised: first, by solving the Zitzler–Deb–Thiele (ZDT) test problems, and second, when dealing with a binary realworld problem of the telecommunications domain. Our experiments reveal that an auto-configured version of NSGA-II can properly address test problems ZDT1 and ZDT2 with up to 217 = 131, 072 decision variables. The same methodology, when applied to the telecommunications problem, shows that significant improvements can be obtained with respect to the original NSGA-II algorithm when solving problems with thousands of bits.es_ES
dc.description.sponsorshipPartial funding for open access charge: Universidad de Málagaes_ES
dc.identifier.citationNebro, A.J.; Galeano- Brajones, J.; Luna, F.; Coello Coello, C.A. Is NSGA-II Ready for Large-Scale Multi-Objective Optimization? Math. Comput. Appl. 2022, 27, 103. https://doi.org/ 10.3390/mca27060103es_ES
dc.identifier.doi10.3390/mca27060103
dc.identifier.urihttps://hdl.handle.net/10630/36589
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectProgramación heurísticaes_ES
dc.subjectAlgoritmos genéticoses_ES
dc.subjectComputación evolutivaes_ES
dc.subjectOptimización matemáticaes_ES
dc.subject.otherNSGA-IIes_ES
dc.subject.otherAuto-configuration and auto-design of metaheuristicses_ES
dc.subject.otherLarge-scale multi-objective optimizationes_ES
dc.subject.otherReal-world problems optimizationes_ES
dc.titleIs NSGA-II Ready for Large-ScaleMulti-Objective Optimization?es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationeddeb2e3-acaf-483e-bb13-cebb22c18413
relation.isAuthorOfPublication91a7952c-23fe-4c2c-99cb-abbc3b36d084
relation.isAuthorOfPublication.latestForDiscoveryeddeb2e3-acaf-483e-bb13-cebb22c18413

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mca-27-00103.pdf
Size:
928.58 KB
Format:
Adobe Portable Document Format
Description:

Collections