Modelling Slice Performance in Radio Access Networks through Supervised Learning

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorGijón-Martín, Carolina
dc.contributor.authorToril-Genovés, Matías
dc.contributor.authorLuna-Ramírez, Salvador
dc.date.accessioned2022-02-16T13:33:12Z
dc.date.available2022-02-16T13:33:12Z
dc.date.issued2022-02
dc.departamentoIngeniería de Comunicaciones
dc.description.abstractIn 5G systems, the Network Slicing (NS) feature allows to deploy several logical networks customized for specific verticals over a common physical infrastructure. To make the most of this feature, cellular operators need models reflecting performance at slice level for re-dimensioning the Radio Access Network (RAN). Throughput is often regarded as a key perfor- mance metric due its strong impact on users demanding enhanced mobility broadband services. In this work, we present the first comprehensive analysis tackling slice throughput estimation in the down link of RAN-sliced networks through Supervised Learning (SL), based on information collected in the operations support system. The considered SL algorithms include support vector regression, k-nearest neighbors, ensemble methods based on decision trees and neural networks. All these algorithms are tested in two NS scenarios with single-service and multi-service slices. To this end, synthetic datasets with performance indicators and connection traces are generated with a system-level simulator emulating the activity of a live cellular network. Results show that the best model (i.e., combination of SL algorithm and input features) to estimate slice throughput may vary depending on the NS scenario. In all cases, the best models have shown adequate accuracy(i.e., error below 10%).es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/23784
dc.language.isoenges_ES
dc.relation.eventdateFebrero 2022es_ES
dc.relation.eventplaceBolonia (Italia)es_ES
dc.relation.eventtitle1st MCM COST Interactes_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectSistemas de comunicaciones móvileses_ES
dc.subjectTelefonía sin hilo-Innovaciones tecnológicases_ES
dc.subject.otherNetwork slicees_ES
dc.subject.other5Ges_ES
dc.subject.otherSupervised learninges_ES
dc.subject.othermobile networkses_ES
dc.titleModelling Slice Performance in Radio Access Networks through Supervised Learninges_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication014c95aa-41da-4fb1-b41d-1e297ff0ecb6
relation.isAuthorOfPublicationc062c7f9-a73f-4f6e-8d25-d8258916a967
relation.isAuthorOfPublication.latestForDiscovery014c95aa-41da-4fb1-b41d-1e297ff0ecb6

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento_riuma_CGM.pdf
Size:
28.84 KB
Format:
Adobe Portable Document Format
Description: